skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of meltwater flow intensity on the spatiotemporal heterogeneity of microbial mats in the McMurdo Dry Valleys, Antarctica
Abstract The meltwater streams of the McMurdo Dry Valleys are hot spots of biological diversity in the climate-sensitive polar desert landscape. Microbial mats, largely comprised of cyanobacteria, dominate the streams which flow for a brief window of time (~10 weeks) over the austral summer. These communities, critical to nutrient and carbon cycling, display previously uncharacterized patterns of rapid destabilization and recovery upon exposure to variable and physiologically detrimental conditions. Here, we characterize changes in biodiversity, transcriptional responses and activity of microbial mats in response to hydrological disturbance over spatiotemporal gradients. While diverse metabolic strategies persist between marginal mats and main channel mats, data collected from 4 time points during the austral summer revealed a homogenization of the mat communities during the mid-season peak meltwater flow, directly influencing the biogeochemical roles of this stream ecosystem. Gene expression pattern analyses identified strong functional sensitivities of nitrogen-fixing marginal mats to changes in hydrological activities. Stress response markers detailed the environmental challenges of each microhabitat and the molecular mechanisms underpinning survival in a polar desert ecosystem at the forefront of climate change. At mid and end points in the flow cycle, mobile genetic elements were upregulated across all mat types indicating high degrees of genome evolvability and transcriptional synchronies. Additionally, we identified novel antifreeze activity in the stream microbial mats indicating the presence of ice-binding proteins (IBPs). Cumulatively, these data provide a new view of active intra-stream diversity, biotic interactions and alterations in ecosystem function over a high-flow hydrological regime.  more » « less
Award ID(s):
1637708
PAR ID:
10416108
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ISME Communications
Volume:
3
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flow pulses mobilize particulate organic matter (POM) in streams from the surrounding landscape and streambed. This POM serves as a source of energy and nutrients, as well as a means for organismal dispersal, to downstream communities. In the barren terrestrial landscape of the McMurdo Dry Valleys (MDV) of Antarctica, benthic microbial mats occupying different in-stream habitat types are the dominant POM source in the many glacier-fed streams. Many of these streams experience daily flow peaks that mobilize POM, and diatoms recovered from underlying stream sediments suggest that mat-derived diatoms in the POM are retained there through hyporheic exchange. Yet, ‘how much’ and ‘when’ different in-stream habitat types contribute to POM diatom assemblages is unknown. To quantify the contribution of different in-stream habitat types to POM diatom assemblages, we collected time-integrated POM samples over four diel experiments, which spanned a gradient of flow conditions over three summers. Diatoms from POM samples were identified, quantified, and compared with dominant habitat types (i.e., benthic ‘orange’ mats, marginal ‘black’ mats, and bare sediments). Like bulk POM, diatom cell concentrations followed a clockwise hysteresis pattern with stream discharge over the daily flow cycles, indicating supply limitation. Diatom community analyses showed that different habitat types harbor distinct diatom communities, and mixing models revealed that a substantial proportion of POM diatoms originated from bare sediments during baseflow conditions. Meanwhile, orange and black mats contribute diatoms to POM primarily during daily flow peaks when both cell concentrations and discharge are highest, making mats the most important contributors to POM diatom assemblages at high flows. These observations may help explain the presence of mat-derived diatoms in hyporheic sediments. Our results thus indicate a varying importance of different in-stream habitats to POM generation and export on daily to seasonal timescales, with implications for biogeochemical cycling and the local diatom metacommunity. 
    more » « less
  2. Abstract The glacial meltwater streams in the McMurdo Dry Valleys (MDVs), Antarctica only flow during the austral summer and contain abundant algal mats which grow at the onset of flow. Their relative abundance in stream channels of this polar desert make the streams biogeochemical hot spots. The MDVs receive minimal precipitation as snow, which is redistributed by wind and deposited in distinct locations, some of which become persistent snow patches each year. Previous studies identified that MDV streamflow comes from a combination of glacier ice and snow, although snow was assumed to contribute little to the overall water budget. This study uses a combination of satellite imagery, terrain analysis, and field measurements to determine where snow patches accumulate and persist across MDV watersheds, and to quantify the potential hydrologic and biogeochemical contributions of snow patches to streams. Watersheds near the coast have the highest snow‐covered area and longest snow persistence. Many of these snow patches accumulate within the stream channels, which results in the potential to contribute to streamflow. During the summer of 2021–2022, stream channel snow patches had the potential to contribute anywhere between <1% and 90% of the total annual discharge in Lake Fryxell Basin streams, and may increase with different hydrometeorological conditions. On average the potential inputs from snow patches to streamflow was between 12% and 25% of the annual discharge during the 2021–2022 season, as determined by snow area and SWE. Snow patches in the majority of the watersheds had higher nitrogen and phosphorous concentrations than stream water, and six streams contained snow with higher N:P ratios than the average N:P in the stream water. This suggests that if such patches melt early in the summer, these nutrient and water inputs could occur at the right time and stoichiometry to be crucial for early season algal mat growth. 
    more » « less
  3. Abstract The numerous ephemeral glacial meltwater streams that flow during the summer in the McMurdo Dry Valleys of South Victoria Land, Antarctica, provide habitats for microbial mats. One of the common mat types is composed of Chlorophyta (colloquially known as a ‘green mat’ due to its colour). While the presence of these mats is regularly monitored, their taxonomic makeup is still under investigation. Using 18S rRNA gene sequencing, the composition of the chlorophyte-dense mats from between rocks and in the main channel from several streams across two valleys was examined. Samples were maintained in native stream water, and select samples from representative locations were transferred to Bristol Medium. The appearance of other eukaryotic species - diatoms and tardigrades - in these green mats completed this integrated study. The results show that the relative abundance of Chlorophyta was significantly increased with the introduction of inorganic nitrogen from Bristol Medium. Chlorophyte taxa in theHazeniaandPleurastrumgenera dominated the samples across both sample types (rock or exposed) and treatments (Antarctic water or Bristol Medium). Furthermore, a reduction in overall sample diversity was observed in samples in Bristol Medium, suggesting preferential nitrogen utilization by these chlorophytes. 
    more » « less
  4. Persistent cold temperatures, a paucity of nutrients, freeze-thaw cycles, and the strongly seasonal light regime make Antarctica one of Earth’s least hospitable surface environments for complex life. Cyanobacteria, however, are well-adapted to such conditions and are often the dominant primary producers in Antarctic inland water environments. In particular, the network of meltwater ponds on the ‘dirty ice’ of the McMurdo Ice Shelf is an ecosystem with extensive cyanobacteria-dominated microbial mat accumulations. This study investigated intact polar lipids (IPLs), heterocyte glycolipids (HGs), and bacteriohopanepolyols (BHPs) in combination with 16S and 18S rRNA gene diversity in microbial mats of twelve ponds in this unique polar ecosystem. To constrain the effects of nutrient availability, temperature and freeze-thaw cycles on the lipid membrane composition, lipids were compared to stromatolite-forming cyanobacterial mats from ice-covered lakes in the McMurdo Dry Valleys as well as from (sub)tropical regions and hot springs. The 16S rRNA gene compositions of the McMurdo Ice Shelf mats confirm the dominance of Cyanobacteria and Proteobacteria while the 18S rRNA gene composition indicates the presence of Ochrophyta, Chlorophyta, Ciliophora, and other microfauna. IPL analyses revealed a predominantly bacterial community in the meltwater ponds, with archaeal lipids being barely detectable. IPLs are dominated by glycolipids and phospholipids, followed by aminolipids. The high abundance of sugar-bound lipids accords with a predominance of cyanobacterial primary producers. The phosphate-limited samples from the (sub)tropical, hot spring, and Lake Vanda sites revealed a higher abundance of aminolipids compared to those of the nitrogen-limited meltwater ponds, affirming the direct affects that N and P availability have on IPL compositions. The high abundance of polyunsaturated IPLs in the Antarctic microbial mats suggests that these lipids provide an important mechanism to maintain membrane fluidity in cold environments. High abundances of HG keto-ols and HG keto-diols, produced by heterocytous cyanobacteria, further support these findings and reveal a unique distribution compared to those from warmer climates. 
    more » « less
  5. Abstract: High‐sulfur, low‐oxygen environments formed by underwater sinkholes and springs create unique habitats populated by microbial mat communities. To explore the diversity and biogeography of these mats, samples were collected from three sites in Alpena, Michigan, one site in Monroe, Michigan, and one site in Palm Coast, Florida. Our study investigated previously undescribed eukaryotic diversity in these habitats and further explored their bacterial communities. Mat samples and water parameters were collected from sulfur spring sites during the spring, summer, and fall of 2022. Cyanobacteria and diatoms were cultured from mat subsamples to create a culture‐based DNA reference library. Remaining mat samples were used for metabarcoding of the 16S andrbcL regions to explore bacterial and diatom diversity, respectively. Analyses of water chemistry, alpha diversity, and beta diversity articulated a range of high‐sulfur, low‐oxygen habitats, each with distinct microbial communities. Conductivity, pH, dissolved oxygen, temperature, sulfate, and chloride had significant influences on community composition but did not describe the differences between communities well. Chloride concentration had the strongest correlation with microbial community structure. Mantel tests revealed that biogeography contributed to differences between communities as well. Our results provide novel information on microbial mat composition and present evidence that both local conditions and biogeography influence these unique communities. 
    more » « less