skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drifting along: using diatoms to track the contribution of microbial mats to particulate organic matter transport in a glacial meltwater stream in the McMurdo Dry Valleys, Antarctica
Flow pulses mobilize particulate organic matter (POM) in streams from the surrounding landscape and streambed. This POM serves as a source of energy and nutrients, as well as a means for organismal dispersal, to downstream communities. In the barren terrestrial landscape of the McMurdo Dry Valleys (MDV) of Antarctica, benthic microbial mats occupying different in-stream habitat types are the dominant POM source in the many glacier-fed streams. Many of these streams experience daily flow peaks that mobilize POM, and diatoms recovered from underlying stream sediments suggest that mat-derived diatoms in the POM are retained there through hyporheic exchange. Yet, ‘how much’ and ‘when’ different in-stream habitat types contribute to POM diatom assemblages is unknown. To quantify the contribution of different in-stream habitat types to POM diatom assemblages, we collected time-integrated POM samples over four diel experiments, which spanned a gradient of flow conditions over three summers. Diatoms from POM samples were identified, quantified, and compared with dominant habitat types (i.e., benthic ‘orange’ mats, marginal ‘black’ mats, and bare sediments). Like bulk POM, diatom cell concentrations followed a clockwise hysteresis pattern with stream discharge over the daily flow cycles, indicating supply limitation. Diatom community analyses showed that different habitat types harbor distinct diatom communities, and mixing models revealed that a substantial proportion of POM diatoms originated from bare sediments during baseflow conditions. Meanwhile, orange and black mats contribute diatoms to POM primarily during daily flow peaks when both cell concentrations and discharge are highest, making mats the most important contributors to POM diatom assemblages at high flows. These observations may help explain the presence of mat-derived diatoms in hyporheic sediments. Our results thus indicate a varying importance of different in-stream habitats to POM generation and export on daily to seasonal timescales, with implications for biogeochemical cycling and the local diatom metacommunity.  more » « less
Award ID(s):
2224760
PAR ID:
10538098
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
15
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The numerous ephemeral glacial meltwater streams that flow during the summer in the McMurdo Dry Valleys of South Victoria Land, Antarctica, provide habitats for microbial mats. One of the common mat types is composed of Chlorophyta (colloquially known as a ‘green mat’ due to its colour). While the presence of these mats is regularly monitored, their taxonomic makeup is still under investigation. Using 18S rRNA gene sequencing, the composition of the chlorophyte-dense mats from between rocks and in the main channel from several streams across two valleys was examined. Samples were maintained in native stream water, and select samples from representative locations were transferred to Bristol Medium. The appearance of other eukaryotic species - diatoms and tardigrades - in these green mats completed this integrated study. The results show that the relative abundance of Chlorophyta was significantly increased with the introduction of inorganic nitrogen from Bristol Medium. Chlorophyte taxa in theHazeniaandPleurastrumgenera dominated the samples across both sample types (rock or exposed) and treatments (Antarctic water or Bristol Medium). Furthermore, a reduction in overall sample diversity was observed in samples in Bristol Medium, suggesting preferential nitrogen utilization by these chlorophytes. 
    more » « less
  2. Abstract The meltwater streams of the McMurdo Dry Valleys are hot spots of biological diversity in the climate-sensitive polar desert landscape. Microbial mats, largely comprised of cyanobacteria, dominate the streams which flow for a brief window of time (~10 weeks) over the austral summer. These communities, critical to nutrient and carbon cycling, display previously uncharacterized patterns of rapid destabilization and recovery upon exposure to variable and physiologically detrimental conditions. Here, we characterize changes in biodiversity, transcriptional responses and activity of microbial mats in response to hydrological disturbance over spatiotemporal gradients. While diverse metabolic strategies persist between marginal mats and main channel mats, data collected from 4 time points during the austral summer revealed a homogenization of the mat communities during the mid-season peak meltwater flow, directly influencing the biogeochemical roles of this stream ecosystem. Gene expression pattern analyses identified strong functional sensitivities of nitrogen-fixing marginal mats to changes in hydrological activities. Stress response markers detailed the environmental challenges of each microhabitat and the molecular mechanisms underpinning survival in a polar desert ecosystem at the forefront of climate change. At mid and end points in the flow cycle, mobile genetic elements were upregulated across all mat types indicating high degrees of genome evolvability and transcriptional synchronies. Additionally, we identified novel antifreeze activity in the stream microbial mats indicating the presence of ice-binding proteins (IBPs). Cumulatively, these data provide a new view of active intra-stream diversity, biotic interactions and alterations in ecosystem function over a high-flow hydrological regime. 
    more » « less
  3. Abstract Dissolved organic carbon (DOC) is a key variable impacting stream biogeochemical processes. The relationship between DOC concentration (C) and stream discharge (q) can elucidate spatial and temporal DOC source dynamics in watersheds. In the ephemeral glacial meltwater streams of the McMurdo Dry Valleys (MDV), Antarctica, the C‐qrelationship has been applied to dissolved inorganic nitrogen and weathering solutes including silica, which all exhibit chemostatic C‐qbehavior; but DOC‐qdynamics have not been studied. DOC concentrations here are low compared to temperate streams, in the range of 0.1–2 mg C l−1, and their chemical signal clearly indicates derivation from microbial biomass (benthic mats and hyporheic biofilm). To investigate whether the DOC generation rate from these autochthonous organic matter pools was sufficient to maintain chemostasis for DOC, despite these streams' large diel and interannual fluctuations in discharge, we fit the long‐term DOC‐qdata to a power law and an advection‐reaction model. Model outputs and coefficients of variation characterize the DOC‐qrelationship as chemostatic for several MDV streams. We propose a conceptual model in which hyporheic carbon storage, hyporheic exchange rates, and net DOC generation rates are key interacting components that enable chemostatic DOC‐qbehavior in MDV streams. This model clarifies the role of autochthonous carbon stores in maintaining DOC chemostasis and may be useful for examining these relationships in temperate systems, which typically have larger sources of bioavailable autochthonous organic carbon than MDV streams but where this autochthonous signal could be masked by a stronger allochthonous contribution. 
    more » « less
  4. Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits.Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms.We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way.The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers.As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment. 
    more » « less
  5. Abstract Although most lotic ecosystems experience frequent and sometimes large disturbances, opportunities are uncommon to study primary succession in streams. Exceptions include new stream channels arising from events such as glacial retreat, volcanism, and catastrophic landslides. In 1980, the eruption and massive landslide at Mount St. Helens (WA, U.S.A.) created an entire landscape with five new catchments undergoing primary succession. We asked if riparian and lotic assemblages at early successional stages (36 years after the eruption) showed predictable change along longitudinal gradients within catchments, and whether assemblages were similar among five replicate catchments.In July 2016, we collected environmental data and characterised riparian, algal, and benthic macroinvertebrate assemblages at 21 stream reaches distributed within and among five neighbouring catchments. We evaluated patterns of richness, abundance, biomass, multivariate taxonomic community structure, and functional traits both longitudinally and among catchments.We found minimal evidence that longitudinal gradients had developed within catchments at 36 years post‐eruption. Increases in diatom and macroinvertebrate richness with downstream distance were the only biological responses with longitudinal trends. Conversely, we documented substantial variation in community structure of riparian plants, soft‐bodied algae, diatoms, and macroinvertebrates at the among‐catchment scale. Among‐catchment differences consistently separated two eastern catchments from three western catchments, and these two groups also differed in stream water chemistry, water temperature, and geomorphology.Overall, we documented greater diversity in the young catchments than predicted by ecologists in the years immediately following the eruption, yet functional traits indicate that these catchments are still in relatively early stages of succession. Variation at the among‐catchment scale is likely to be driven in part by hydrological source variation, with the two eastern catchments showing environmental signatures associated with glacial ice‐melt and the three western catchments probably fed primarily by springs from groundwater aquifers. Contemporary flow disturbance regimes also varied among catchments and successional trajectories were probably reset repeatedly in streams experiencing more frequent disturbance.Similar to new stream channels formed following glacial retreat, our results support a tolerance model of succession in streams. However, contrasting abiotic templates among Mount St. Helens catchments appear to be driving different successional trajectories of riparian plant, algal, and macroinvertebrate assemblages among neighbouring small catchments sharing the same catastrophic disturbance history. 
    more » « less