Both organohalide perovskites and colloidal quantum dots are attractive and promising materials for optoelectronic applications. Recent experiments have combined the two to create “quantum dot-in-perovskite” assemblies for highly efficient light emissions. In this work, we unravel photoexcitation dynamics at the interface between the perovskite and the quantum dot by means of first-principle non-adiabatic molecular dynamics simulations. We find that such assemblies adopt the type-I band structure and are free of defect states. The interfacial and the electronic structure are robust against the thermal fluctuations at 300K. The lowest excitation is predicted to be localized entirely on the quantum dot and the photoexcited charge transfer takes place in a picosecond timescale. The charge transfer dynamics of the photoexcited electron and hole exhibits a moderate asymmetry, which can be attributed to the differences in electronic coupling between the donor and the acceptor and the electron-phonon coupling. The ultrafast and balanced charge transfer dynamics endows the ‘dot-in-a-crystal’ devices with unprecedented performance, which could lead to important applications in photovoltaics, photocatalysis, and infrared light emissions. 
                        more » 
                        « less   
                    
                            
                            Incoherent nonadiabatic to coherent adiabatic transition of electron transfer in colloidal quantum dot molecules
                        
                    
    
            Abstract Electron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes. This provides a handle to tune the electron transfer from the incoherent nonadiabatic regime to the coherent adiabatic regime in a single system. We develop an atomistic model to account for several states and couplings to the lattice vibrations and utilize the mean-field mixed quantum-classical method to describe the charge transfer dynamics. Here, we show that charge transfer rates increase by several orders of magnitude as the system is driven to the coherent, adiabatic limit, even at elevated temperatures, and delineate the inter-dot and torsional acoustic modes that couple most strongly to the charge transfer dynamics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2026741
- PAR ID:
- 10416316
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.more » « less
- 
            Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both computational and experimental standpoints. The single vibrational degree of freedom, as well as the strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model population dynamics where the results are directly comparable against quantum mechanical benchmarks. Using a simulated pump–probe type experiment, this work presents computational predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical Meyer–Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy surfaces. The main driving force for population transfer arises from the ground vibrational level of the D 1 Σ + adiabatic state that is embedded in the manifold of near-dissociation C 1 Σ + vibrational states. When coupled through a sharply localized first-order derivative coupling most of the population transfers between t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled regime is presented using a variational eigensolver methodology.more » « less
- 
            null (Ed.)Abstract Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits.more » « less
- 
            A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spinChemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of research in which nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees of freedom, there are few if any applicable and practical quasiclassical methods. Here, we show that for nonadiabatic dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry (as relevant to many coupled nuclear-electronic-spin systems), the optimal semiclassical approach is to generalize Tully’s surface hopping dynamics from coordinate space to phase space. In order to generate the relevant phase-space adiabatic surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total Hamiltonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic and nonadiabatic limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for the study of semiclassical nonadiabatic dynamics in the presence of spin–orbit coupling and/or external magnetic fields. One expects many simulations to follow as far as modeling cutting-edge experiments with entangled nuclear, electronic, and spin degrees of freedom, e.g., experiments displaying chiral-induced spin selectivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
