skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.  more » « less
Award ID(s):
1405050
PAR ID:
10593572
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
147
Issue:
19
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We detail several interesting features in the dynamics of an equilaterally shaped electronic excitation-transfer (EET) trimer with distance-dependent intermonomer excitation-transfer couplings. In the absence of electronic-vibrational coupling, symmetric and antisymmetric superpositions of two single-monomer excitations are shown to exhibit purely constructive, oscillatory, and purely destructive interference in the EET to the third monomer, respectively. In the former case, the transfer is modulated by motion in the symmetrical framework-expansion vibration induced by the Franck–Condon excitation. Distortions in the shape of the triangular framework degrade that coherent EET while activating excitation transfer in the latter case of an antisymmetric initial state. In its symmetrical configuration, two of the three single-exciton states of the trimer are degenerate. This degeneracy is broken by the Jahn–Teller-active framework distortions. The calculations illustrate closed, approximately circular pseudo-rotational wave-packet dynamics on both the lower and the upper adiabatic potential energy surfaces of the degenerate manifold, which lead to the acquisition after one cycle of physically meaningful geometric (Berry) phases of π. Another manifestation of Berry-phase development is seen in the evolution of the vibrational probability density of a wave packet on the lower Jahn–Teller adiabatic potential comprising a superposition of clockwise and counterclockwise circular motions. The circular pseudo-rotation on the upper cone is shown to stabilize the adiabatic electronic state against non-adiabatic internal conversion via the conical intersection, a dynamical process analogous to Slonczewski resonance. Strategies for initiating and monitoring these various dynamical processes experimentally using pre-resonant impulsive Raman excitation, short-pulse absorption, and multi-dimensional wave-packet interferometry are outlined in brief. 
    more » « less
  2. Abstract The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm−1coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates. 
    more » « less
  3. A model vibronic Hamiltonian composed of coupled anharmonic vibrational modes and two electronic states provides a quantitative framework for understanding how vibronic couplings and dipole orientations are encoded in two-dimensional vibronic spectroscopy. 
    more » « less
  4. Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence. 
    more » « less
  5. Energy flow in molecules, like the dynamics of other many-dimensional finite systems, involves quantum transport across a dense network of near-resonant states. For molecules in their electronic ground state, the network is ordinarily provided by anharmonic vibrational Fermi resonances. Surface crossing between different electronic states provides another route to chaotic motion and energy redistribution. We show that nonadiabatic coupling between electronic energy surfaces facilitates vibrational energy flow and, conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state mixing. A generalization of the Logan–Wolynes theory of quantum energy flow in many-dimensional Fermi resonance systems to the two-surface case gives a phase diagram describing the boundary between localized quantum dynamics and global energy flow. We explore these predictions and test them using a model inspired by the problem of electronic excitation energy transfer in the photosynthetic reaction center. Using an explicit numerical solution of the time-dependent Schrödinger equation for this ten-dimensional model, we find quite good agreement with the expectations from the approximate analytical theory. 
    more » « less