skip to main content

Title: On the rheology and magnetization of dilute magnetic emulsions under small amplitude oscillatory shear
A dilute magnetic emulsion under the combined action of a uniform external magnetic field and a small amplitude oscillatory shear is studied using numerical simulations. We consider a three-dimensional domain with a single ferrofluid droplet suspended in a non-magnetizable Newtonian fluid. We present results of droplet shape and orientation, viscoelastic functions and bulk emulsion magnetization as functions of the shear oscillation frequency, magnetic field intensity and orientation. We also investigate how the magnetic field induces mechanical anisotropy by producing internal torques in oscillatory conditions. We found that, when the magnetic field is parallel to the shear plane, the droplet shape is mostly independent of the shear oscillation frequency. Regarding the viscometric functions, we show how the external magnetic field modifies the storage and loss moduli, especially for a field aligned to the main velocity gradient. The bulk emulsion magnetization is studied in the same fashion as the viscoelastic functions of the oscillatory shear. We show that the in-phase component of the magnetization with respect to the shear rate reaches a saturation magnetization, at the high frequencies limit, dependent on the magnetic field intensity and orientation. On the other hand, we found a non-zero out-of-phase response, which indicates a finite emulsion magnetization relaxation time. Our results indicate that the magnetization relaxation is closely related to the mechanical relaxation for dilute magnetic emulsions under oscillatory shear.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a three-dimensional computational study of the impact of external magnetic fields on the dynamics of superparamagnetic ferrofluid droplets and rheology of dilute ferrofluid emulsions in planar extensional flows. Specifically, we show how the intensity and direction of uniform magnetic fields affect the planar extensional rheology of ferrofluid emulsions by changing the shape and magnetization of the constituent ferrofluid droplets in suspension. We find that the two traditional extensional viscosities associated with the normal stresses of the bulk emulsion in extension either remain constant or increase with the field intensity; the only exception occurs when the field direction is perpendicular to the extension plane, where increasing the field intensity keeps the planar extensional viscosity constant and modestly decreases the second extensional viscosity. We also find that the droplet tilts in the flow when the external field is not aligned with one of the flow main directions, which changes the recirculation pattern and flow topology inside the droplet. At the microscopic level, the droplet experiences a magnetic torque because of a small misalignment between its magnetization and the external field direction. At the macroscopic level, the bulk emulsion experiences a field-induced internal torque that leads to a nonsymmetric stress tensor with unexpected shear components in extension. To account for this unconventional stress-strain response, we introduce new extensional material functions such as shear and rotational viscosity coefficients that unveil novel rheological signatures of ferrofluid emulsions in planar extensional flows. This study offers new insights into applications based on the field-assisted manipulation of ferrofluid droplets and sheds light on the potential of ferrofluid emulsions as a model system for chiral fluids with internal rotational degrees of freedom that can be activated and controlled by coupling static magnetic fields with hydrodynamic flows. 
    more » « less
  2. null (Ed.)
    Many recent studies have highlighted the timescale for stress relaxation of biomaterials on the microscale as an important factor in regulating a number of cell-material interactions, including cell spreading, proliferation, and differentiation. Relevant timescales on the order of 0.1–100 s have been suggested by several studies. While such timescales are accessible through conventional mechanical rheology, several biomaterials have heterogeneous structures, and stress relaxation mechanisms of the bulk material may not correspond to that experienced in the cellular microenvironment. Here we employ X-ray photon correlation spectroscopy (XPCS) to explore the temperature-dependent dynamics, relaxation time, and microrheology of multicomponent hydrogels comprising of commercial poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer F127 and alginate. Previous studies on this system have shown thermoreversible behavior in the bulk oscillatory shear rheology. At physiological temperatures, bulk rheology of these samples shows behavior characteristic of a soft solid, with G ′ > G ′′ and no crossover between G ′ and G ′′ over the measurable frequency range, indicating a relaxation time >125 s. By contrast, XPCS-based microrheology shows viscoelastic behavior at low frequencies, and XPCS-derived correlation functions show relaxation times ranging from 10–45 s on smaller length scales. Thus, we are able to use XPCS to effectively probe the viscoelasticity and relaxation behavior within the material microenvironments. 
    more » « less
  3. Abstract In response to external stimuli, such as heat, light, or magnetic fields, stimuli-responsive soft materials can change their current configuration to a new equilibrium state through non-equilibrium kinetic processes, including reaction, diffusion, and viscoelastic relaxation, which generates novel spatiotemporal shape-morphing behavior. Using a photothermal shape memory polymer (SMP) cantilever beam as a model system, this work analytically, numerically, and experimentally studies its non-equilibrium kinetic processes and spatiotemporal bending under light illumination. We establish a thermomechanical model for SMPs capturing the concurrent non-equilibrium processes of heat transfer and viscoelastic relaxation, which induces inhomogeneous temperature and strain distributions through the thickness of the beam, resulting in its bending and unbending. By varying the key dimensionless parameters, we theoretically and experimentally observe different types of bending dynamics. Moreover, our theory takes into consideration changes in the angles of incidence caused by extensive beam bending, and demonstrates that this effect can dramatically delay the bending due to reduction of the effective light intensity, which is further validated experimentally. This work demonstrates programmable and predictable spatiotemporal morphing of SMPs, and provides design guidelines for SMP morphing structures and robots. 
    more » « less
  4. This research explores the inherent vulnerability of nonlinear vehicle platoons characterized by the oscillatory behavior triggered by external perturbations. The perturbation exerted on the vehicle platoon is regarded as an external force on an object. Following the mechanical vibration analysis in mechanics, this research proposes a vibration-theoretic approach that advances our understanding of platoon vulnerability from two aspects. First, the proposed approach introduces damping intensity to characterize vehicular platoon vulnerability, which divides platoon oscillations into two types, i.e., underdamped and overdamped. The damping intensity measures the platoon’s recovery strength in responding to perturbations. Second, the proposed approach can obtain the resonance frequency of a nonlinear vehicle platoon, where resonance amplifies platoon oscillation magnitude when the external perturbation frequency equals the platoon’s damping oscillation frequency. The main contribution of this research lies in the analytical derivation of the closed-form formulas of damping intensity and resonance frequency. In particular, the proposed approach formulates platoon dynamics under perturbation as a second-order non-homogeneous ordinary differential equation, enabling rigorous derivations and analyses for platoons with complicated nonlinear car-following behaviors. Through simulations built on real-world data, this paper demonstrates that an overdamped vehicle platoon is more robust against perturbations, and an underdamped platoon can be destabilized easily by exerting a perturbation at the platoon’s resonance frequency. The theoretical derivations and simulation results shed light on the design of reliable platooning control, either for human-driven or automated vehicles, to suppress the adverse effects of oscillations. 
    more » « less
  5. The dynamics of an evaporating droplet in an unsteady flow is of practical interest in many industrial applications and natural processes. To investigate the transport and evaporation dynamics of such droplets, we present a numerical study of an isolated droplet in an oscillating gas-phase flow. The study uses a one-way coupled two-phase flow model to assess the effect of the amplitude and the frequency of a sinusoidal external flow field on the lifetime of a multicomponent droplet containing a non-volatile solute dissolved in a volatile solvent. The results show that the evaporation process becomes faster with an increase in the amplitude or the frequency of the gas-phase oscillation. The liquid-phase transport inside the droplet also is influenced by the unsteadiness of the external gas-phase flow. A scaling analysis based on the response of the droplet under the oscillating drag force is subsequently carried out to unify the observed evaporation dynamics in the simulations under various conditions. The analysis quantifies the enhancement in the droplet velocity and Reynolds number as a function of the gas-phase oscillation parameters and predicts the effects on the evaporation rate. 
    more » « less