skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous dynamics of two-dimensional insulating domain with superclimbing edges
Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian formalism, we show how the essence of the superclimb phenomenon—dynamic conjugation of the fields of the superfluid phase and geometric shape—clearly manifests itself via characteristic modes of autonomous motion of the insulating domain (“droplet”) with superclimbing edges. In the translation invariant case and in the absence of supercurrent along the edge, the droplet demonstrates ballistic motion with the velocity-dependent shape and zero bulk currents. In an isotropic trapping potential, the droplet features a doubly degenerate sloshing mode. The period of the ground-state evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet dynamics: The motion acquires features resembling that of a two-dimensional charged particle interacting with a perpendicular magnetic field. In a linear external potential (uniform force field), the state with a supercurrent demonstrates a spectacular gyroscopic effect—uniform motion in the perpendicular to the force direction. Published by the American Physical Society2024  more » « less
Award ID(s):
2335904 2335905
PAR ID:
10553915
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic colloids can be driven with time-varying fields to form clusters and voids that re-organize over vastly different timescales. However, the driving force behind these nonequilibrium dynamics is not well-understood. Here, we introduce a topological framework that predicts protected edge flows despite strong thermal motion. Notably, these edge flows produce shear stress that creates global rotation of clusters but not of voids. We verify this theory experimentally using micrometer-sized superparamagnetic colloids to demonstrate these emergent physical predictions and show how they drive system reorganization differentially at long timescales. Our results elucidate fundamental principles that shape and control nonequilibrium colloidal aggregates. Published by the American Physical Society2025 
    more » « less
  2. The Kapitza-Dirac effect is the diffraction of quantum particles by a standing wave of light. We here report an analogous phenomenon in pilot-wave hydrodynamics, wherein droplets walking across the surface of a vibrating liquid bath are deflected by a standing Faraday wave. We show that, in certain parameter regimes, the statistical distribution of the droplet deflection angles reveals a diffraction pattern reminiscent of that observed in the Kapitza-Dirac effect. Through experiments and simulations, we show that the diffraction pattern results from the complex interactions of the droplets with the standing wave. Our study highlights nonresonant effects associated with the detuning of the droplet bouncing and the bath vibration, which are shown to lead to drop speed variations and droplet sorting according to the droplet's phase of impact. We discuss the similarities and differences between our hydrodynamic system and the discrete and continuum interpretations of the Kapitza-Dirac effect, and introduce the notion of ponderomotive effects in pilot-wave hydrodynamics. Published by the American Physical Society2025 
    more » « less
  3. Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter. Published by the American Physical Society2024 
    more » « less
  4. This paper is associated with a poster winner of a 2023 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available online at the Gallery of Fluid Motion, . Published by the American Physical Society2024 
    more » « less
  5. We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in quasicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion, emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of semicoherent interfaces and dislocation kinematics are given. Published by the American Physical Society2024 
    more » « less