skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AGRN: accurate gene regulatory network inference using ensemble machine learning methods
Abstract Motivation Biological processes are regulated by underlying genes and their interactions that form gene regulatory networks (GRNs). Dysregulation of these GRNs can cause complex diseases such as cancer, Alzheimer’s and diabetes. Hence, accurate GRN inference is critical for elucidating gene function, allowing for the faster identification and prioritization of candidate genes for functional investigation. Several statistical and machine learning-based methods have been developed to infer GRNs based on biological and synthetic datasets. Here, we developed a method named AGRN that infers GRNs by employing an ensemble of machine learning algorithms. Results From the idea that a single method may not perform well on all datasets, we calculate the gene importance scores using three machine learning methods—random forest, extra tree and support vector regressors. We calculate the importance scores from Shapley Additive Explanations, a recently published method to explain machine learning models. We have found that the importance scores from Shapley values perform better than the traditional importance scoring methods based on almost all the benchmark datasets. We have analyzed the performance of AGRN using the datasets from the DREAM4 and DREAM5 challenges for GRN inference. The proposed method, AGRN—an ensemble machine learning method with Shapley values, outperforms the existing methods both in the DREAM4 and DREAM5 datasets. With improved accuracy, we believe that AGRN inferred GRNs would enhance our mechanistic understanding of biological processes in health and disease. Availabilityand implementation https://github.com/DuaaAlawad/AGRN. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
2019745
PAR ID:
10416388
Author(s) / Creator(s):
; ; ;
Editor(s):
Kuijjer, Marieke
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
3
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationGene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model. ResultsWe propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks. Availability and implementationThe source code and data is available at https://github.com/MihirBafna/CLARIFY. 
    more » « less
  2. Inferring gene regulatory networks (GRNs) from single-cell gene expression datasets is a challenging task. Existing methods are often designed heuristically for specific datasets and lack the flexibility to incorporate additional information or compare against other algorithms. Further, current GRN inference methods do not provide uncertainty estimates with respect to the interactions that they predict, making inferred networks challenging to interpret. To overcome these challenges, we introduce Probabilistic Matrix Factorization for Gene Regulatory Network inference (PMF-GRN). PMF-GRN uses single-cell gene expression data to learn latent factors representing transcription factor activity as well as regulatory relationships between transcription factors and their target genes. This approach incorporates available experimental evidence into prior distributions over latent factors and scales well to single-cell gene expression datasets. By utilizing variational inference, we facilitate hyperparameter search for principled model selection and direct comparison to other generative models. To assess the accuracy of our method, we evaluate PMF-GRN using the model organisms Saccharomyces cerevisiae and Bacillus subtilis, benchmarking against database-derived gold standard interactions. We discover that, on average, PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods. Moreover, our PMF-GRN approach offers well-calibrated uncertainty estimates, as it performs gene regulatory network (GRN) inference in a probabilistic setting. These estimates are valuable for validation purposes, particularly when validated interactions are limited or a gold standard is incomplete. 
    more » « less
  3. Abstract The inference of gene regulatory networks (GRNs) is crucial to understanding the regulatory mechanisms that govern biological processes. GRNs may be represented as edges in a graph, and hence, it have been inferred computationally for scRNA-seq data. A wisdom of crowds approach to integrate edges from several GRNs to create one composite GRN has demonstrated improved performance when compared with individual algorithm implementations on bulk RNA-seq and microarray data. In an effort to extend this approach to scRNA-seq data, we present COFFEE (COnsensus single cell-type speciFic inFerence for gEnE regulatory networks), a Borda voting-based consensus algorithm that integrates information from 10 established GRN inference methods. We conclude that COFFEE has improved performance across synthetic, curated, and experimental datasets when compared with baseline methods. Additionally, we show that a modified version of COFFEE can be leveraged to improve performance on newer cell-type specific GRN inference methods. Overall, our results demonstrate that consensus-based methods with pertinent modifications continue to be valuable for GRN inference at the single cell level. While COFFEE is benchmarked on 10 algorithms, it is a flexible strategy that can incorporate any set of GRN inference algorithms according to user preference. A Python implementation of COFFEE may be found on GitHub: https://github.com/lodimk2/coffee 
    more » « less
  4. Abstract Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates. 
    more » « less
  5. Abstract MotivationElucidating the topology of gene regulatory networks (GRNs) from large single-cell RNA sequencing datasets, while effectively capturing its inherent cell-cycle heterogeneity and dropouts, is currently one of the most pressing problems in computational systems biology. Recently, graph learning (GL) approaches based on graph signal processing have been developed to infer graph topology from signals defined on graphs. However, existing GL methods are not suitable for learning signed graphs, a characteristic feature of GRNs, which are capable of accounting for both activating and inhibitory relationships in the gene network. They are also incapable of handling high proportion of zero values present in the single cell datasets. ResultsTo this end, we propose a novel signed GL approach, scSGL, that learns GRNs based on the assumption of smoothness and non-smoothness of gene expressions over activating and inhibitory edges, respectively. scSGL is then extended with kernels to account for non-linearity of co-expression and for effective handling of highly occurring zero values. The proposed approach is formulated as a non-convex optimization problem and solved using an efficient ADMM framework. Performance assessment using simulated datasets demonstrates the superior performance of kernelized scSGL over existing state of the art methods in GRN recovery. The performance of scSGL is further investigated using human and mouse embryonic datasets. Availability and implementationThe scSGL code and analysis scripts are available on https://github.com/Single-Cell-Graph-Learning/scSGL. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less