skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capturing Travel Mode Adoption in Designing On-Demand Multimodal Transit Systems
This paper studies how to integrate rider mode preferences into the design of on-demand multimodal transit systems (ODMTSs). It is motivated by a common worry in transit agencies that an ODMTS may be poorly designed if the latent demand, that is, new riders adopting the system, is not captured. This paper proposes a bilevel optimization model to address this challenge, in which the leader problem determines the ODMTS design, and the follower problems identify the most cost efficient and convenient route for riders under the chosen design. The leader model contains a choice model for every potential rider that determines whether the rider adopts the ODMTS given her proposed route. To solve the bilevel optimization model, the paper proposes an exact decomposition method that includes Benders optimal cuts and no-good cuts to ensure the consistency of the rider choices in the leader and follower problems. Moreover, to improve computational efficiency, the paper proposes upper and lower bounds on trip durations for the follower problems, valid inequalities that strengthen the no-good cuts, and approaches to reduce the problem size with problem-specific preprocessing techniques. The proposed method is validated using an extensive computational study on a real data set from the Ann Arbor Area Transportation Authority, the transit agency for the broader Ann Arbor and Ypsilanti region in Michigan. The study considers the impact of a number of factors, including the price of on-demand shuttles, the number of hubs, and access to transit systems criteria. The designed ODMTSs feature high adoption rates and significantly shorter trip durations compared with the existing transit system and highlight the benefits of ensuring access for low-income riders. Finally, the computational study demonstrates the efficiency of the decomposition method for the case study and the benefits of computational enhancements that improve the baseline method by several orders of magnitude. Funding: This research was partly supported by National Science Foundation [Leap HI Proposal NSF-1854684] and the Department of Energy [Research Award 7F-30154].  more » « less
Award ID(s):
1854684
PAR ID:
10416458
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transportation Science
Volume:
57
Issue:
2
ISSN:
0041-1655
Page Range / eLocation ID:
351 to 375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hebrard E., Musliu N. (Ed.)
    This study explores the design of an On-Demand Multimodal Transit System (ODMTS) that includes segmented mode switching models that decide whether potential riders adopt the new ODMTS or stay with their personal vehicles. It is motivated by the desire of transit agencies to design their network by taking into account both existing and latent demand, as quality of service improves. The paper presents a bilevel optimization where the leader problem designs the network and each rider has a follower problem to decide her best route through the ODMTS. The bilevel model is solved by a decomposition algorithm that combines traditional Benders cuts with combinatorial cuts to ensure the consistency of mode choices by the leader and follower problems. The approach is evaluated on a case study using historical data from Ann Arbor, Michigan, and a user choice model based on the income levels of the potential transit riders. 
    more » « less
  2. This paper reconsiders the On-Demand Multimodal Transit Systems (ODMTS) Design with Adoptions problem (ODMTS-DA) to capture the latent demand in on-demand multimodal transit systems. The ODMTS-DA is a bilevel optimization problem, for which Basciftci and Van Hentenryck proposed an exact combinatorial Benders decomposition. Unfortunately, their proposed algorithm only finds high-quality solutions for medium-sized cities and is not practical for large metropolitan areas. The main contribution of this paper is to propose a new path-based optimization model, called P-Path, to address these computational difficulties. The key idea underlying P-Path is to enumerate two specific sets of paths which capture the essence of the choice model associated with the adoption behavior of riders. With the help of these path sets, the ODMTS-DA can be formulated as a single-level mixed-integer programming model. In addition, the paper presents preprocessing techniques that can reduce the size of the model significantly. P-Path is evaluated on two comprehensive case studies: the midsize transit system of the Ann Arbor – Ypsilanti region in Michigan (which was studied by Basciftci and Van Hentenryck) and the large-scale transit system for the city of Atlanta. The experimental results show that P-Path solves the Michigan ODMTS-DA instances in a few minutes, bringing more than two orders of magnitude improvements compared with the existing approach. For Atlanta, the results show that P-Path can solve large-scale ODMTS-DA instances (about 17 millions variables and 37 millions constraints) optimally in a few hours or in a few days. These results show the tremendous computational benefits of P-Path which provides a scalable approach to the design of on-demand multimodal transit systems with latent demand. History: Accepted by Andrea Lodi, Design & Analysis of Algorithms—Discrete. Funding: This work was partially supported by National Science Foundation Leap-HI [Grant 1854684] and the Tier 1 University Transportation Center (UTC): Transit - Serving Communities Optimally, Responsively, and Efficiently (T-SCORE) from the U.S. Department of Transportation [69A3552047141]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0014 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0014 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  3. null (Ed.)
    Traditionally, in the bilevel optimization framework, a leader chooses her actions by solving an upper-level problem, assuming that a follower chooses an optimal reaction by solving a lower-level problem. However, in many settings, the lower-level problems might be nontrivial, thus requiring the use of tailored algorithms for their solution. More importantly, in practice, such problems might be inexactly solved by heuristics and approximation algorithms. Motivated by this consideration, we study a broad class of bilevel optimization problems where the follower might not optimally react to the leader’s actions. In particular, we present a modeling framework in which the leader considers that the follower might use one of a number of known algorithms to solve the lower-level problem, either approximately or heuristically. Thus, the leader can hedge against the follower’s use of suboptimal solutions. We provide algorithmic implementations of the framework for a class of nonlinear bilevel knapsack problem (BKP), and we illustrate the potential impact of incorporating this realistic feature through numerical experiments in the context of defender-attacker problems. 
    more » « less
  4. Current free and subscription-based trip planners have heavily focused on providing available transit options to improve the first and last-mile connectivity to the destination. However, those trip planners may not truly be multimodal to vulnerable road users (VRU)s since those selected side walk routes may not be accessible or feasible for people with disability. Depending on the level of availability of digital twin of travelers behaviors and sidewalk inventory, providing the personalized suggestion about the sidewalk with route features coupled with transit service reliability could be useful and happier transit riders may boost public transit demand/funding and reduce rush hour congestion. In this paper, the adaptive trip planner considers the real-time impact of environment changes on pedestrian route choice preferences (e.g., fatigue, weather conditions, unexpected construction, road congestion) and tolerance level in response to transit service uncertainty. Side walk inventory is integrated in directed hypergraph on the General Transit Feed Specification to specify traveler utilities as weights on the hyperedge. A realistic assessment of the effect of the user-defined preferences on a traveler’s path choice is presented for a section of the Boston transit network, with schedule data from the Massachusetts Bay Transportation Authority. Different maximum utility values are presented as a function of varying traveler’s risk-tolerance levels. In response to unprecedented climate change, poverty, and inflation, this new trip planner can be adopted by state agencies to boost their existing public transit demand without extra efforts 
    more » « less
  5. null (Ed.)
    The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services. 
    more » « less