Abstract Graph representation learning has revolutionized many artificial intelligence and machine learning tasks in recent years, ranging from combinatorial optimization, drug discovery, recommendation systems, image classification, social network analysis to natural language understanding. This paper shows their efficacy in modeling relationships between products and making predictions for unseen product networks. By representing products as nodes and their relationships as edges of a graph, we show how an inductive graph neural network approach, named GraphSAGE, can efficiently learn continuous representations for nodes and edges. These representations also capture product feature information such as price, brand, and engineering attributes. They are combined with a classification model for predicting the existence of a relationship between any two products. Using a case study of the Chinese car market, we find that our method yields double the F-1 score compared to an Exponential Random Graph Model-based method for predicting the co-consideration relationship between cars. While a vanilla Graph-SAGE requires a partial network to make predictions, we augment it with an ‘adjacency prediction model’ to circumvent this limitation. This enables us to predict product relationships when no neighborhood information is known. Finally, we demonstrate how a permutation-based interpretability analysis can provide insights on how design attributes impact the predictions of relationships between products. Overall, this work provides a systematic method to predict the relationships between products in a complex engineering system.
more »
« less
Product Competition Prediction in Engineering Design Using Graph Neural Networks
Abstract Understanding relationships between different products in a market system and predicting how changes in design impact their market position can be instrumental for companies to create better products. We propose a graph neural network-based method for modeling relationships between products, where nodes in a network represent products and edges represent their relationships. Our modeling enables a systematic way to predict the relationship links between unseen products for future years. When applied to a Chinese car market case study, our method based on an inductive graph neural network approach, GraphSAGE, yields double the link prediction performance compared to an existing network modeling method—exponential random graph model-based method for predicting the car co-consideration relationships. Our work also overcomes scalability and multiple data type-related limitations of the traditional network modeling methods by modeling a larger number of attributes, mixed categorical and numerical attributes, and unseen products. While a vanilla GraphSAGE requires a partial network to make predictions, we augment it with an “adjacency prediction model” to circumvent the limitation of needing neighborhood information. Finally, we demonstrate how insights obtained from a permutation-based interpretability analysis can help a manufacturer understand how design attributes impact the predictions of product relationships. Overall, this work provides a systematic data-driven method to predict the relationships between products in a complex network such as the car market.
more »
« less
- PAR ID:
- 10416554
- Date Published:
- Journal Name:
- ASME Open Journal of Engineering
- Volume:
- 1
- ISSN:
- 2770-3495
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Statistical network models allow us to study the co-evolution between the products and the social aspects of a market system, by modeling these components and their interactions as graphs. In this paper, we study competition between different car models using network theory, with a focus on how product attributes (like fuel economy and price) affect which cars are considered together and which cars are finally bought by customers. Unlike past work, where most systems have been studied with the assumption that relationships between competitors are binary (i.e., whether a relationship exists or not), we allow relationships to take strengths (i.e., how strong a relationship is). Specifically, we use valued Exponential Random Graph Models and show that our approach provides a significant improvement over the baselines in predicting product co-considerations as well as in the validation of market share. This is also the first attempt to study aggregated purchase preference and car competition using valued directed networks.more » « less
-
Opinion prediction is an emerging research area with diverse real-world applications, such as market research and situational awareness. We identify two lines of approaches to the problem of opinion prediction. One uses topic-based sentiment analysis with time-series modeling, while the other uses static embedding of text. The latter approaches seek user-specific solutions by generating user fingerprints. Such approaches are useful in predicting user's reactions to unseen content. In this work, we propose a novel dynamic fingerprinting method that leverages contextual embedding of user's comments conditioned on relevant user's reading history. We integrate BERT variants with a recurrent neural network to generate predictions. The results show up to 13\% improvement in micro F1-score compared to previous approaches. Experimental results show novel insights that were previously unknown such as better predictions for an increase in dynamic history length, the impact of the nature of the article on performance, thereby laying the foundation for further research.more » « less
-
null (Ed.)Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence of attributed graphs. It has a temporal self-attention architecture to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs.more » « less
-
Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations.more » « less