skip to main content

Title: A Graph Neural Network Approach for Product Relationship Prediction

Graph representation learning has revolutionized many artificial intelligence and machine learning tasks in recent years, ranging from combinatorial optimization, drug discovery, recommendation systems, image classification, social network analysis to natural language understanding. This paper shows their efficacy in modeling relationships between products and making predictions for unseen product networks. By representing products as nodes and their relationships as edges of a graph, we show how an inductive graph neural network approach, named GraphSAGE, can efficiently learn continuous representations for nodes and edges. These representations also capture product feature information such as price, brand, and engineering attributes. They are combined with a classification model for predicting the existence of a relationship between any two products. Using a case study of the Chinese car market, we find that our method yields double the F-1 score compared to an Exponential Random Graph Model-based method for predicting the co-consideration relationship between cars. While a vanilla Graph-SAGE requires a partial network to make predictions, we augment it with an ‘adjacency prediction model’ to circumvent this limitation. This enables us to predict product relationships when no neighborhood information is known. Finally, we demonstrate how a permutation-based interpretability analysis can provide insights on how design attributes impact the predictions of relationships between products. Overall, this work provides a systematic method to predict the relationships between products in a complex engineering system.

more » « less
Award ID(s):
2005661 2203080
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding relationships between different products in a market system and predicting how changes in design impact their market position can be instrumental for companies to create better products. We propose a graph neural network-based method for modeling relationships between products, where nodes in a network represent products and edges represent their relationships. Our modeling enables a systematic way to predict the relationship links between unseen products for future years. When applied to a Chinese car market case study, our method based on an inductive graph neural network approach, GraphSAGE, yields double the link prediction performance compared to an existing network modeling method—exponential random graph model-based method for predicting the car co-consideration relationships. Our work also overcomes scalability and multiple data type-related limitations of the traditional network modeling methods by modeling a larger number of attributes, mixed categorical and numerical attributes, and unseen products. While a vanilla GraphSAGE requires a partial network to make predictions, we augment it with an “adjacency prediction model” to circumvent the limitation of needing neighborhood information. Finally, we demonstrate how insights obtained from a permutation-based interpretability analysis can help a manufacturer understand how design attributes impact the predictions of product relationships. Overall, this work provides a systematic data-driven method to predict the relationships between products in a complex network such as the car market. 
    more » « less
  2. Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations. 
    more » « less
  3. Martelli, Pier Luigi (Ed.)
    Abstract Motivation The complete characterization of enzymatic activities between molecules remains incomplete, hindering biological engineering and limiting biological discovery. We develop in this work a technique, enzymatic link prediction (ELP), for predicting the likelihood of an enzymatic transformation between two molecules. ELP models enzymatic reactions cataloged in the KEGG database as a graph. ELP is innovative over prior works in using graph embedding to learn molecular representations that capture not only molecular and enzymatic attributes but also graph connectivity. Results We explore transductive (test nodes included in the training graph) and inductive (test nodes not part of the training graph) learning models. We show that ELP achieves high AUC when learning node embeddings using both graph connectivity and node attributes. Further, we show that graph embedding improves link prediction by 30% in area under curve over fingerprint-based similarity approaches and by 8% over support vector machines. We compare ELP against rule-based methods. We also evaluate ELP for predicting links in pathway maps and for reconstruction of edges in reaction networks of four common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes and proteobacteria. To emphasize the importance of graph embedding in the context of biochemical networks, we illustrate how graph embedding can guide visualization. Availability and implementation The code and datasets are available through 
    more » « less
  4. null (Ed.)
    While scientific collaboration is critical for a scholar, some collaborators can be more significant than others, e.g., lifetime collaborators. It has been shown that lifetime collaborators are more influential on a scholar’s academic performance. However, little research has been done on investigating predicting such special relationships in academic networks. To this end, we propose Scholar2vec, a novel neural network embedding for representing scholar profiles. First, our approach creates scholars’ research interest vector from textual information, such as demographics, research, and influence. After bridging research interests with a collaboration network, vector representations of scholars can be gained with graph learning. Meanwhile, since scholars are occupied with various attributes, we propose to incorporate four types of scholar attributes for learning scholar vectors. Finally, the early-stage similarity sequence based on Scholar2vec is used to predict lifetime collaborators with machine learning methods. Extensive experiments on two real-world datasets show that Scholar2vec outperforms state-of-the-art methods in lifetime collaborator prediction. Our work presents a new way to measure the similarity between two scholars by vector representation, which tackles the knowledge between network embedding and academic relationship mining. 
    more » « less
  5. null (Ed.)
    In this paper, we propose a supervised graph representation learning method to model the relationship between brain functional connectivity (FC) and structural connectivity (SC) through a graph encoder-decoder system. The graph convolutional network (GCN) model is leveraged in the encoder to learn lower-dimensional node representations (i.e. node embeddings) integrating information from both node attributes and network topology. In doing so, the encoder manages to capture both direct and indirect interactions between brain regions in the node embeddings which later help reconstruct empirical FC networks. From node embeddings, graph representations are learnt to embed the entire graphs into a vector space. Our end-to-end model utilizes a multi-objective loss function to simultaneously learn node representations for FC network reconstruction and graph representations for subject classification. The experiment on a large population of non-drinkers and heavy drinkers shows that our model can provide a characterization of the population pattern in the SC-FC relationship, while also learning features that capture individual uniqueness for subject classification. The identified key brain subnetworks show significant between-group difference and support the promising prospect of GCN-based graph representation learning on brain networks to model human brain activity and function. 
    more » « less