skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A network-based discrete choice model for decision-based design
Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations.  more » « less
Award ID(s):
2005661 2203080
NSF-PAR ID:
10416556
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Design Science
Volume:
9
ISSN:
2053-4701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Suweis, Samir (Ed.)
    Statistical network models have been used to study the competition among different products and how product attributes influence customer decisions. However, in existing research using network-based approaches, product competition has been viewed as binary (i.e., whether a relationship exists or not), while in reality, the competition strength may vary among products. In this paper, we model the strength of the product competition by employing a statistical network model, with an emphasis on how product attributes affect which products are considered together and which products are ultimately purchased by customers. We first demonstrate how customers’ considerations and choices can be aggregated as weighted networks. Then, we propose a weighted network modeling approach by extending the valued exponential random graph model to investigate the effects of product features and network structures on product competition relations. The approach that consists of model construction, interpretation, and validation is presented in a step-by-step procedure. Our findings suggest that the weighted network model outperforms commonly used binary network baselines in predicting product competition as well as market share. Also, traditionally when using binary network models to study product competitions and depending on the cutoff values chosen to binarize a network, the resulting estimated customer preferences can be inconsistent. Such inconsistency in interpreting customer preferences is a downside of binary network models but can be well addressed by the proposed weighted network model. Lastly, this paper is the first attempt to study customers’ purchase preferences (i.e., aggregated choice decisions) and car competition (i.e., customers’ co-consideration decisions) together using weighted directed networks. 
    more » « less
  2. null (Ed.)
    Abstract Understanding the impact of engineering design on product competitions is imperative for product designers to better address customer needs and develop more competitive products. In this paper, we propose a dynamic network-based approach for modeling and analyzing the evolution of product competitions using multi-year buyer survey data. The product co-consideration network, formed based on the likelihood of two products being co-considered from survey data, is treated as a proxy of products’ competition relations in a market. The separate temporal exponential random graph model (STERGM) is employed as the dynamic network modeling technique to model the evolution of network as two separate processes: link formation and link dissolution. We use China’s automotive market as a case study to illustrate the implementation of the proposed approach and the benefits of dynamic network models compared to the static network modeling approach based on an exponential random graph model (ERGM). The results show that since STERGM takes preexisting competition relations into account, it provides a pathway to gain insights into why a product may maintain or lose its competitiveness over time. These driving factors include both product attributes (e.g., fuel consumption) as well as current market structures (e.g., the centralization effect). With the proposed dynamic network-based approach, the insights gained from this paper can help designers better interpret the temporal changes of product competition relations to support product design decisions. 
    more » « less
  3. As electronic waste (e-waste) becomes one of the fastest growing environmental concerns, remanufacturing is considered as a promising solution. However, the profitability of take back systems is hampered by several factors including the lack of information on the quantity and timing of to-be-returned used products to a remanufacturing facility. Product design features, consumers’ awareness of recycling opportunities, socio-demographic information, peer pressure, and the tendency of customer to keep used items in storage are among contributing factors in increasing uncertainties in the waste stream. Predicting customer choice decisions on returning back used products, including both the time in which the customer will stop using the product and the end-of-use decisions (e.g. storage, resell, through away, and return to the waste stream) could help manufacturers have a better estimation of the return trend. The objective of this paper is to develop an Agent Based Simulation (ABS) model integrated with Discrete Choice Analysis (DCA) technique to predict consumer decisions on the End-of-Use (EOU) products. The proposed simulation tool aims at investigating the impact of design features, interaction among individual consumers and socio-demographic characteristics of end users on the number of returns. A numerical example of cellphone take-back system has been provided to show the application of the model. 
    more » « less
  4. Cellular service carriers often employ reactive strategies to assist customers who experience non-outage related individual service degradation issues (e.g., service performance degradations that do not impact customers at scale and are likely caused by network provisioning issues for individual devices). Customers need to contact customer care to request assistance before these issues are resolved. This paper presents our experience with PACE (ProActive customer CarE), a novel, proactive system that monitors, troubleshoots and resolves individual service issues, without having to rely on customers to first contact customer care for assistance. PACE seeks to improve customer experience and care operation efficiency by automatically detecting individual (non-outage related) service issues, prioritizing repair actions by predicting customers who are likely to contact care to report their issues, and proactively triggering actions to resolve these issues. We develop three machine learning-based prediction models, and implement a fully automated system that integrates these prediction models and takes resolution actions for individual customers.We conduct a large-scale trace-driven evaluation using real-world data collected from a major cellular carrier in the US, and demonstrate that PACE is able to predict customers who are likely to contact care due to non-outage related individual service issues with high accuracy. We further deploy PACE into this cellular carrier network. Our field trial results show that PACE is effective in proactively resolving non-outage related individual customer service issues, improving customer experience, and reducing the need for customers to report their service issues. 
    more » « less
  5. null (Ed.)
    We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items. 
    more » « less