Recent developments in ultrafast laser technology have resulted in novel few-cycle sources in the mid-infrared. Accurately characterizing the time-dependent intensities and electric field waveforms of such laser pulses is essential to their applications in strong-field physics and attosecond pulse generation, but this remains a challenge. Recently, it was shown that tunnel ionization can provide an ultrafast temporal “gate” for characterizing high-energy few-cycle laser waveforms capable of ionizing air. Here, we show that tunneling and multiphoton excitation in a dielectric solid can provide a means to measure lower-energy and longer-wavelength pulses, and we apply the technique to characterize microjoule-level near- and mid-infrared pulses. The method lends itself to both all-optical and on-chip detection of laser waveforms, as well as single-shot detection geometries.
more »
« less
Millijoule few-cycle pulses from staged compression for strong and high field science
Intense few-cycle laser pulses have a breadth of applications in high energy density science, including particle acceleration and x-ray generation. Multi-amplifier laser system pulses have durations of tens of femtoseconds or longer. To achieve high intensities at the single-cycle limit, a robust and efficient post-compression scheme is required. We demonstrate a staged compression technique using self-phase modulation in thin dielectric media, in which few-cycle pulses can be produced. The few-cycle pulse is then used to generate extreme ultravoilet light via high harmonic generation at strong field intensities and to generate MeV electron beams via laser solid interactions at relativistic intensities.
more »
« less
- PAR ID:
- 10216821
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 29
- Issue:
- 6
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 9123
- Size(s):
- Article No. 9123
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit “instantaneous” optical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles because of enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.6 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.more » « less
-
The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics.more » « less
-
We experimentally demonstrate long-wavelength-infrared (LWIR) femtosecond filamentation in solids. Systematic investigations of supercontinuum (SC) generation and self-compression of the LWIR pulses assisted by laser filamentation are performed in bulk KrS-5 and ZnSe, pumped by , 9 µm, 10 µJ pulses from an optical parametric chirped-pulse amplifier operating at 10 kHz of repetition rate. Multi-octave SC spectra are demonstrated in both materials. While forming stable single filament, 1.5 cycle LWIR pulses with 4.5 µJ output pulse energy are produced via soliton-like self-compression in a 5 mm thick KrS-5. The experimental results quantitatively agree well with the numerical simulation based on the unidirectional pulse propagation equation. This work shows the experimental feasibility of high-energy, near-single-cycle LWIR light bullet generation in solids.more » « less
-
While industrial-grade Yb-based amplifiers have become very prevalent, their limited gain bandwidth has created a large demand for robust spectral broadening techniques that allow for few-cycle pulse compression. In this work, we perform a comparative study between several atomic and molecular gases as media for spectral broadening in a hollow-core fiber geometry. Exploiting nonlinearities such as self-phase modulation, self-steepening, and stimulated Raman scattering, we explore the extent of spectral broadening and its dependence on gas pressure, the critical power for self-focusing, and the optimal regime for few-cycle pulse compression. Using a 3-mJ, 200-fs input laser pulses, we achieve 17 fs, few-cycle pulses with 80% fiber energy transmission efficiency. The optimal parameters can be scaled for higher or lower input pulse energies with appropriate gas parameters and fiber geometry.more » « less