skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pilot-WINGS: An extended MUSE view of the structure of Abell 370
ABSTRACT We investigate the strong-lensing cluster Abell 370 (A370) using a wide Integral Field Unit (IFU) spectroscopic mosaic from the Multi-Unit Spectroscopic Explorer (MUSE). IFU spectroscopy provides significant insight into the structure and mass content of galaxy clusters, yet IFU-based cluster studies focus almost exclusively on the central Einstein-radius region. Covering over 14 arcmin2, the new MUSE mosaic extends significantly beyond the A370 Einstein radius, providing, for the first time, a detailed look at the cluster outskirts. Combining these data with wide-field, multi-band Hubble Space Telescope (HST) imaging from the BUFFALO project, we analyse the distribution of objects within the cluster and along the line of sight. Identifying 416 cluster galaxies, we use kinematics to trace the radial mass profile of the halo, providing a mass estimate independent from the lens model. We also measure radially averaged properties of the cluster members, tracking their evolution as a function of infall. Thanks to the high spatial resolution of our data, we identify six cluster members acting as galaxy–galaxy lenses, which constrain localized mass distributions beyond the Einstein radius. Finally, taking advantage of MUSE’s 3D capabilities, we detect and analyse multiple spatially extended overdensities outside of the cluster that influence lensing-derived halo mass estimates. We stress that much of this work is only possible thanks to the robust, extended IFU coverage, highlighting its importance even in less optically dense cluster regions. Overall, this work showcases the power of combining HST + MUSE, and serves as the initial step towards a larger and wider program targeting several clusters.  more » « less
Award ID(s):
2007390
PAR ID:
10416674
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 497-517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲  z  ≲ 1.7 ( z median  = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ  > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z  ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 <  z  < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts. 
    more » « less
  2. ABSTRACT Cosmological constraints from current and upcoming galaxy cluster surveys are limited by the accuracy of cluster mass calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass probability distribution. The cluster lensing selection bias can thus lead to overestimated mean cluster mass and biased cosmology results. We show that the lensing selection bias exhibits a strong scale dependence and is approximately 20–60 per cent for ΔΣ at large scales. This selection bias largely originates from spurious member galaxies within ±20–60 $$h^{-1}\, \rm Mpc$$ along the line of sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member galaxies in photometric cluster surveys. While our results qualitatively agree with those in the literature, accurate quantitative modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues covering a wide range of galaxy–halo connection models. 
    more » « less
  3. ABSTRACT Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line of sight, and therefore changes with the orientation of the cluster. Studies suggest that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from ‘The Three Hundred Project’ to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and their embedded BCGs are aligned, with an average ∼20 degree angle between their major axes. The bias in weak lensing cluster mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for relaxed clusters. We also test a 2D cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve weak-lensing mass estimates. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev–Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 data set. With signal-to-noise ratio of 62 (45) for galaxy (weak lensing) profiles over scales of about 0.2–20 h−1 Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: (1) The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. (2) The full mass profile is also consistent with the simulations. (3) The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. We measure the dependence of the profile shapes on the galaxy sample, redshift, and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation, cosmology, and astrophysics are discussed. 
    more » « less
  5. ABSTRACT Expanding from previous work, we present weak-lensing (WL) measurements for a total sample of 30 distant (zmedian = 0.93) massive galaxy clusters from the South Pole Telescope Sunyaev–Zel’dovich (SPT-SZ) Survey, measuring galaxy shapes in Hubble Space Telescope (HST) Advanced Camera for Surveys images. We remove cluster members and preferentially select z ≳ 1.4 background galaxies via V − I colour, employing deep photometry from VLT/FORS2 and Gemini-South/GMOS. We apply revised calibrations for the WL shape measurements and the source redshift distribution to estimate the cluster masses. In combination with earlier Magellan/Megacam results for lower-redshifts clusters, we infer refined constraints on the scaling relation between the SZ detection significance and the cluster mass, in particular regarding its redshift evolution. The mass scale inferred from the WL data is lower by a factor $$0.76^{+0.10}_{-0.14}$$ (at our pivot redshift z = 0.6) compared to what would be needed to reconcile a flat Planck νΛCDM cosmology (in which the sum of the neutrino masses is a free parameter) with the observed SPT-SZ cluster counts. In order to sensitively test the level of (dis-)agreement between SPT clusters and Planck, further expanded WL follow-up samples are needed. 
    more » « less