skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics
Protecting and enhancing forest carbon sinks is considered a natural solution for mitigating climate change. However, the increasing frequency, intensity, and duration of droughts due to climate change can threaten the stability and growth of existing forest carbon sinks. Extreme droughts weaken plant hydraulic systems, can lead to tree mortality events, and may reduce forest diversity, making forests more vulnerable to subsequent forest disturbances, such as forest fires or pest infestations. Although early warning metrics (EWMs) derived using satellite remote sensing data are now being tested for predicting post-drought plant physiological stress and mortality, applications of unmanned aerial vehicles (UAVs) are yet to be explored extensively. Herein, we provide twenty-four prospective approaches classified into five categories: (i) physiological complexities, (ii) site-specific and confounding (abiotic) factors, (iii) interactions with biotic agents, (iv) forest carbon monitoring and optimization, and (v) technological and infrastructural developments, for adoption, future operationalization, and upscaling of UAV-based frameworks for EWM applications. These UAV considerations are paramount as they hold the potential to bridge the gap between field inventory and satellite remote sensing for assessing forest characteristics and their responses to drought conditions, identifying and prioritizing conservation needs of vulnerable and/or high-carbon-efficient tree species for efficient allocation of resources, and optimizing forest carbon management with climate change adaptation and mitigation practices in a timely and cost-effective manner.  more » « less
Award ID(s):
2106015 2152671
PAR ID:
10416816
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Remote Sensing
Volume:
15
Issue:
10
ISSN:
2072-4292
Page Range / eLocation ID:
2627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change‐driven drought stress has triggered numerous large‐scale tree mortality events in recent decades. Advances in mechanistic understanding and prediction are greatly limited by an inability to detect in situ where trees are likely to die in order to take timely measurements and actions. Thus, algorithms of early warning and detection of drought‐induced tree stress and mortality could have major scientific and societal benefits. Here, we leverage two consecutive droughts in the southwestern United States to develop and test a set of early warning metrics. Using Landsat satellite data, we constructed early warning metrics from the first drought event. We then tested these metrics' ability to predict spatial patterns in tree physiological stress and mortality from the second drought. To test the broader applicability of these metrics, we also examined a separate drought in the Amazon rainforest. The early warning metrics successfully explained subsequent tree mortality in the second drought in the southwestern US, as well as mortality in the independent drought in tropical forests. The metrics also strongly correlated with spatial patterns in tree hydraulic stress underlying mortality, which provides a strong link between tree physiological stress and remote sensing during the severe drought and indicates that the loss of hydraulic function during drought likely mediated subsequent mortality. Thus, early warning metrics provide a critical foundation for elucidating the physiological mechanisms underpinning tree mortality in mature forests and guiding management responses to these climate‐induced disturbances. 
    more » « less
  2. Monitoring and estimating drought impact on plant physiological processes over large regions remains a major challenge for remote sensing and land surface modeling, with important implications for understanding plant mortality mechanisms and predicting the climate change impact on terrestrial carbon and water cycles. The Orbiting Carbon Observatory 3 (OCO‐3), with its unique diurnal observing capability, offers a new opportunity to track drought stress on plant physiology. Using radiative transfer and machine learning modeling, we derive a metric of afternoon photosynthetic depression from OCO‐3 solar‐induced chlorophyll fluorescence (SIF) as an indicator of plant physiological drought stress. This unique diurnal signal enables a spatially explicit mapping of plants' physiological response to drought. Using OCO‐3 observations, we detect a widespread increasing drought stress during the 2020 southwest US drought. Although the physiological drought stress is largely related to the vapor pressure deficit (VPD), our results suggest that plants' sensitivity to VPD increases as the drought intensifies and VPD sensitivity develops differently for shrublands and grasslands. Our findings highlight the potential of using diurnal satellite SIF observations to advance the mechanistic understanding of drought impact on terrestrial ecosystems and to improve land surface modeling. 
    more » « less
  3. Abstract Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming. 
    more » « less
  4. Abstract Climate change is expected to increase drought intensity and frequency, which are commonly predicted will threaten the survival of forests. Most forest die‐off projections assume that recent tree mortality will not alter die‐off severity during subsequent droughts. We tested this assumption by comparing die‐off in semi‐arid conifer forest stands in California that were exposed to a single drought in 2012–2015 (“2ndDrought Only”) with forest stands that experienced drought in both 1999–2002 and 2012–2015 (“Both Droughts”). We quantified die‐off severity as a reduction in the satellite observed Normalized Difference Moisture Index, and cumulative moisture deficit as negative 4‐year Precipitation minus Evapotranspiration (4‐year Pr‐ET overdraft). Here we show that recent tree morality reduces die‐off severity in semi‐arid conifer forests exposed to subsequent drought. Stands in the2ndDrought Onlysample experienced severe die‐off associated with extreme 4‐year Pr‐ET overdraft in 2012–2015. Stands in theBoth Droughtssample experienced severe die‐off and 4‐year Pr‐ET overdraft in 1999–2002, but comparatively little 2012–2015 die‐off despite continued 4‐year Pr‐ET overdraft. We interpret this as a dampening effect, where prior tree mortality reduces forest die‐off severity during subsequent drought exposure. As forests continue to experience disturbances linked to climate change, dampening effects will impose a transient, and perhaps long‐term, constraint on the impact of repeated drought. 
    more » « less
  5. Tropical woody plants store ∼230 petagrams of carbon (PgC) in their aboveground living biomass. This review suggests that these stocks are currently growing in primary forests at rates that have decreased in recent decades. Droughts are an important mechanism in reducing forest C uptake and stocks by decreasing photosynthesis, elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. Tropical forests were a C source to the atmosphere during the 2015–2016 El Niño–related drought, with some estimates suggesting that up to 2.3 PgC were released. With continued climate change, the intensity and frequency of droughts and fires will likely increase. It is unclear at what point the impacts of severe, repeated disturbances by drought and fires could exceed tropical forests’ capacity to recover. Although specific threshold conditions beyond which ecosystem properties could lead to alternative stable states are largely unknown, the growing body of scientific evidence points to such threshold conditions becoming more likely as climate and land use change across the tropics. ▪ Droughts have reduced forest carbon uptake and stocks by elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. ▪ Threshold conditions beyond which tropical forests are pushed into alternative stable states are becoming more likely as effects of droughts intensify. 
    more » « less