The identification of students at risk for academic failure in undergraduate chemistry courses has been heavily addressed in the literature. Arguably one of the strongest and most well-supported predictors of undergraduate success in chemistry is the mathematics portion of the SAT (SAT-M), a college-entrance, standardized test administered by the College Board. While students scoring in the bottom quartile of the SAT-M (herein referred to as at-risk) perform significantly worse on first-semester chemistry assessments, little is known of the topics on which these students differentially struggle. The purpose of this study is to provide insight as to which first-semester chemistry topics present an incommensurate challenge to at-risk students. Students were identified as either at-risk or not at-risk via SAT-M scores. Students’ assessment responses were collected across four semesters of first-semester chemistry courses at a large, public university ( N = 5636). At-risk students struggled consistently across all topics but disproportionately with mole concept and stoichiometry. Analyzing the trend in topics suggests that the struggles of at-risk students are not entirely attributable to topics that rely heavily on algorithms or algebraic math. Moreso, at-risk students found to have performed well on mole concept and stoichiometry went on to perform similarly as their not at-risk peers. The results support an instructional emphasis on these topics with reviewed literature offering promising, practical options to better serve at-risk students and broaden representation in the sciences.
more »
« less
An explanative basis for the differential performance of students with low math aptitude in general chemistry
Students who score within the bottom quartile on cognitive measures of math aptitude have been identified as at-risk for low performance in chemistry courses, with less attention as to why such differential performance persists. At-risk students struggle most differentially on assessment items related to the mole concept and stoichiometry. An exploration as to the nature of the differential performance observed became of great interest as the assessment of these topics rarely progresses beyond multiplication or division, and at-risk students who achieved proficiency with the mole concept and stoichiometry had no noticeable gaps in academic chemistry performance when compared to students scoring in the top three quartiles of math aptitude. Thus, students in first-semester general chemistry were surveyed to describe their solution processes toward assessment items involving the mole concept and stoichiometry. Three hundred and forty-eight students responded to all survey prompts with 101 identified as at-risk. Findings suggest that while all students were observed to struggle in the conceptualization of the algorithms by which they execute solution processes, not-at-risk chemistry students were more likely to achieve correct answers via chemically implausible solution pathways. Rather than suggest the removal of assessment practices involving algorithmic, multiple-choice assessment on these topics, the implications include practical suggestions and opportunities for further research toward improving the equitability of measures used to assess proficiency with stoichiometry.
more »
« less
- Award ID(s):
- 1712164
- PAR ID:
- 10416854
- Date Published:
- Journal Name:
- Chemistry Education Research and Practice
- Volume:
- 20
- Issue:
- 3
- ISSN:
- 1109-4028
- Page Range / eLocation ID:
- 570 to 593
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As many school districts nationwide continue to incorporate Computer Science (CS) and Computational Thinking (CT) instruction at the K-8 level, it is crucial that we understand the factors and skills, such as reading and math proficiency, that contribute to the success of younger learners in a computing curriculum and are typically developed at this age. Yet, little is known about the relationship between reading and math proficiency, and the learning of key CS concepts at the elementary level. This study focused on 4th-grade students (ages 9-10) who were taught events, sequence, and repetition through an adaptation of the Creative Computing Curriculum. While all students benefited from access to such a curriculum, there were statistically-significant differences in learning outcomes, especially between students whose reading and math proficiency are below grade-level, and students whose proficiency are at or above grade-level. This performance gap suggests the need for curricular improvement and learning strategies that are CS specific for students who struggle with reading and math.more » « less
-
null (Ed.)A well-established literature base identifies a portion of students enrolled in post-secondary General Chemistry as at-risk of failing the course based on incoming metrics. Learning about the experiences and factors that lead to this higher failure rate is essential toward improving retention in this course. This study examines the relationship between study habits and academic performance for at-risk students in General Chemistry. Students who were in the bottom quartile of SAT math scores were identified as at-risk students. The study habits of General Chemistry students, both those identified as at-risk and those not identified were measured by text message inquiries. The text message asked ‘‘Have you studied for General Chemistry I in the past 48 hours? If so, how did you study?” twice a week throughout a semester. Student responses to the messages were used to calculate the frequency of studying throughout the term. The results from a multiple regression analysis showed that high frequency of studying could mitigate the difference between at-risk and non-at-risk students on final exam scores. Additionally, the quality of studying for six at-risk students was analyzed by student interviews in concert with their text message responses. The results indicated that the quality of studying is not necessarily linked to frequency of studying and both quality and frequency can play a role in at-risk students' academic performance. The results presented offer a path for at-risk students to succeed in General Chemistry and the methodology presented offers a potential avenue for evaluating future efforts to improve student success.more » « less
-
The Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE) was designed to measure students’ proficiency with measurement uncertainty concepts and practices across ten different assessment objectives to help facilitate the improvement of laboratory instruction focused on this important topic. To ensure the reliability and validity of this assessment, we conducted a comprehensive statistical analysis using classical test theory. This analysis includes an evaluation of the test as a whole, as well as an in-depth examination of individual items and assessment objectives. We make use of a previously reported on scoring scheme involving pairing items with assessment objectives, creating a new unit for statistical analysis referred to as a “couplet.” The findings from our analysis provide evidence for the reliability and validity of SPRUCE as an assessment tool for undergraduate physics labs. This increases both instructors’ and researchers’ confidence in using SPRUCE for measuring students’ proficiency with measurement uncertainty concepts and practices to ultimately improve laboratory instruction. Additionally, our results using couplets and assessment objectives demonstrate how these can be used with traditional classic test theory analysis. Published by the American Physical Society2024more » « less
-
College calculus plays an important role in STEM students’ degree and career aspirations. One of the key factors considered in assessing a student’s ability to be successful in calculus is their proficiency in topics from prior mathematics courses such as algebra and precalculus. This study set out to examine the impact of students’ precalculus proficiency on their achievement in introductory calculus based on their classroom environment. Results from the implementation of the Modeling Practices in Calculus (MPC) model, an innovative, active learning approach, are presented. Using a randomized-controlled trial research design, students were randomly assigned to MPC and traditional, lecture-based calculus sections. The Precalculus Concept Assessment inventory was administered to gauge students’ precalculus proficiency. We found that students exposed to the MPC model were more likely to be successful in their calculus course, even if they began with low precalculus proficiency. Also, students enrolled in the MPC sections saw significant growth in their precalculus proficiency from the beginning to the end of the semester. Additionally, we observed this model providing support for students in key demographics (low proficiency, female, underclassmen) in terms of the development of their proficiency that they may not receive in traditional classrooms.more » « less
An official website of the United States government

