skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Second Generation of Cata ‐Annulated Azaacene Bisimides: Towards Electron‐Accepting Materials
Abstract This work presents the 2ndgeneration ofcata‐annulated azaacene bisimides with increased electron affinities (up to −4.38 eV) compared to their consaguine conventional azaacenes. These compounds were synthesized via Buchwald–Hartwig coupling followed by oxidation with MnO2. Crystal structure engineering through variation of the bisimide substituents furnished crystalline derivatives suitable forproof of conceptorganic field effect transistors with electron mobilities up to 2.2×10−4 cm2(Vs)−1. Moreover, we were able to characterize the charge carrying species, the radical anion, using electron paramagnetic resonance and absorption measurements.  more » « less
Award ID(s):
1954975
PAR ID:
10416934
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPlusChem
Volume:
88
Issue:
5
ISSN:
2192-6506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less
  2. Abstract The production of olefins via on‐purpose dehydrogenation of alkanes allows for a more efficient, selective and lower cost alternative to processes such as steam cracking. Silica‐supported pincer‐iridium complexes of the form [(≡SiO−R4POCOP)Ir(CO)] (R4POCOP=κ3‐C6H3‐2,6‐(OPR2)2) are effective for acceptorless alkane dehydrogenation, and have been shown stable up to 300 °C. However, while solution‐phase analogues of such species have demonstrated high regioselectivity for terminal olefin production under transfer dehydrogenation conditions at or below 240 °C, in open systems at 300 °C, regioselectivity under acceptorless dehydrogenation conditions is consistently low. In this work, complexes [(≡SiO−tBu4POCOP)Ir(CO)] (1) and [(≡SiO−iPr4PCP)Ir(CO)] (2) were synthesized via immobilization of molecular precursors. These complexes were used for gas‐phase butane transfer dehydrogenation using increasingly sterically demanding olefins, resulting in observed selectivities of up to 77 %. The results indicate that the active site is conserved upon immobilization. 
    more » « less
  3. Abstract Superionic conductors, includingACrX2(A=Ag, Cu; X = S, Se) compounds, have attracted attention due to their low lattice thermal conductivity and high ionic conductivity. These properties are driven by structural characteristics such as anharmonicity, soft bonding, and disorder, which enhance both fast ion transport and thermal resistance. In the present study, we investigate the impact of various factors (e.g.A-site disorder, microstructure, speed of sound and chemical composition) on the thermal conductivity of the compounds CuCrS2, CuCrSe2, AgCrS2and AgCrSe2. The samples were synthesized using solid state reaction, ball milling and subsequent spark plasma sintering, and thermal diffusivity, electrical resistivity, Hall coefficients and Seebeck coefficients were measured as a function of temperature. The selenides were found to behave as degenerate semiconductors, with reasonable thermoelectric figure of merit (up to 0.79 in CuCrSe2), while the sulfides behaved as non-degenerate semiconductors with high electrical resistivity. At room temperature, all samples are in the ordered phase and show low lattice thermal conductivity ranging from 0.60 W m−1-K in AgCrSe2to 1.1 W m−1-K in CuCrSe2. Little reduction in lattice thermal conductivity was observed in the high-temperature phase, despite the increased disorder on the cation site and the onset of superionic conductivity. This suggests that the low lattice thermal conductivity inACrX2compounds is an inherent property of the crystal structure, caused by anharmonic bonding and diffuson dominated transport. 
    more » « less
  4. Spear, John R. (Ed.)
    ABSTRACT The degree of cyclization, or ring index (RI), in archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids was long thought to reflect homeoviscous adaptation to temperature. However, more recent experiments show that other factors (e.g., pH, growth phase, and energy flux) can also affect membrane composition. The main objective of this study was to investigate the effect of carbon and energy metabolism on membrane cyclization. To do so, we cultivatedAcidianussp. DS80, a metabolically flexible and thermoacidophilic archaeon, on different electron donor, acceptor, and carbon source combinations (S0/Fe3+/CO2, H2/Fe3+/CO2, H2/S0/CO2, or H2/S0/glucose). We show that differences in energy and carbon metabolism can result in over a full unit of change in RI in the thermoacidophileAcidianussp. DS80. The patterns in RI correlated with the normalized electron transfer rate between the electron donor and acceptor and did not always align with thermodynamic predictions of energy yield. In light of this, we discuss other factors that may affect the kinetics of cellular energy metabolism: electron transfer chain (ETC) efficiency, location of ETC reaction components (cytoplasmicvs.extracellular), and the physical state of electron donors and acceptors (gasvs.solid). Furthermore, the assimilation of a more reduced form of carbon during heterotrophy appears to decrease the demand for reducing equivalents during lipid biosynthesis, resulting in lower RI. Together, these results point to the fundamental role of the cellular energy state in dictating GDGT cyclization, with those cells experiencing greater energy limitation synthesizing more cyclized GDGTs. IMPORTANCESome archaea make unique membrane-spanning lipids with different numbers of five- or six-membered rings in the core structure, which modulate membrane fluidity and permeability. Changes in membrane core lipid composition reflect the fundamental adaptation strategies of archaea in response to stress, but multiple environmental and physiological factors may affect the needs for membrane fluidity and permeability. In this study, we tested howAcidianussp. DS80 changed its core lipid composition when grown with different electron donor/acceptor pairs. We show that changes in energy and carbon metabolisms significantly affected the relative abundance of rings in the core lipids of DS80. These observations highlight the need to better constrain metabolic parameters, in addition to environmental factors, which may influence changes in membrane physiology in Archaea. Such consideration would be particularly important for studying archaeal lipids from habitats that experience frequent environmental fluctuations and/or where metabolically diverse archaea thrive. 
    more » « less
  5. Summary Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+]cyt) increase as a second messenger. The downstream PM Ca2+channels remain enigmatic. Here, theArabidopsis thalianaCa2+channel subunit CYCLIC NUCLEOTIDE‐GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+]cytsignalling in roots.Extracellular ATP‐induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+]cytwere measured with aequorin, and root transcriptional changes were determined by quantitative real‐time PCR. Twocngc2loss‐of‐function mutants were used:cngc2‐3anddefence not death1(which expresses cytosolic aequorin).Extracellular ATP‐induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+dependent, requiring CNGC2 but not CNGC4 (its channel co‐subunit in immunity signalling). Activation of PM Ca2+influx currents also required CNGC2. The eATP‐induced [Ca2+]cytincrease and transcriptional response incngc2roots were significantly impaired.CYCLIC NUCLEOTIDE‐GATED CHANNEL2 is required for eATP‐induced epidermal Ca2+influx, causing depolarization leading to [Ca2+]cytincrease and damage‐related transcriptional response. 
    more » « less