Graphene-based materials are being developed for a variety of wearable technologies to provide advanced functions that include sensing; temperature regulation; chemical, mechanical, or radiative protection; or energy storage. We hypothesized that graphene films may also offer an additional unanticipated function: mosquito bite protection for light, fiber-based fabrics. Here, we investigate the fundamental interactions between graphene-based films and the globally important mosquito species, Aedes aegypti , through a combination of live mosquito experiments, needle penetration force measurements, and mathematical modeling of mechanical puncture phenomena. The results show that graphene or graphene oxide nanosheet films in the dry state are highly effective at suppressing mosquito biting behavior on live human skin. Surprisingly, behavioral assays indicate that the primary mechanism is not mechanical puncture resistance, but rather interference with host chemosensing. This interference is proposed to be a molecular barrier effect that prevents Aedes from detecting skin-associated molecular attractants trapped beneath the graphene films and thus prevents the initiation of biting behavior. The molecular barrier effect can be circumvented by placing water or human sweat as molecular attractants on the top (external) film surface. In this scenario, pristine graphene films continue to protect through puncture resistance—a mechanical barrier effect—while graphene oxide films absorb the water and convert to mechanically soft hydrogels that become nonprotective.
more »
« less
Correlating Structure to Damping and Stiffness in Graphene Oxide Films
Graphene oxide (GO) films have a great potential for aerospace, electronics, and renewable energy applications due to their low cost and unique properties. For structural applications, they can achieve an exceptional combination of damping and stiffness. This study investigates the effect of packing density, reduction, and water removal on stiffness and damping of graphene oxide films. GO sheets dispersed in water are passed through a filter and deposited on a removable substrate. Through variations of the film fabrication process, films of both GO and reduced GO (rGO) are produced with varying levels of packing. Heat treatment is also used to remove the water in half of the films. The degree of packing is assessed through film density calculations. Microscopy as well as Raman and X-ray spectroscopy are used to measure the degree of packing while Dynamic Mechanical Analysis (DMA) is used to quantity mechanical damping and storage modulus of specimens in tension. Correlating mechanical properties to structure of films revealed new understanding of damping and stress transfer mechanisms in these materials. Optimal structures resulted in superior combinations of stiffness (18 GPa) and damping (0.14), potentially paving the way for using GO based films in advanced structural applications.
more »
« less
- PAR ID:
- 10416976
- Date Published:
- Journal Name:
- American Society for Composites-Thirty-Seventh Technical Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graphene oxide (GO) films have great potential for aerospace, electronics, and renewable energy applications. GO sheets are low-cost and water-soluble and retain some of Graphene’s exceptional properties once reduced. GO or reduced GO (rGO) sheets within a film interact with each other via secondary bonds and cross-linkers. These interfacial interactions include non-covalent bonds such as hydrogen bonding, ionic bonding, and π-π stacking. Stress transfer and failure mechanisms in GO and rGO films, specifically how linkers affect them, are not well understood. The present study investigates the influence of inter-particle interactions and film structures, focusing on hydrogen bonds introduced via cellulose nanocrystals (CNC), on failure and stress-transfer of the GO and rGO films. To this end, GO films with CNC crosslinkers were made, followed by a chemical reduction. The few-micron thick films were characterized using tensile testing. All tested films exhibited a brittle failure and achieved tensile strengths and modulus in the ~40-85 MPa and ~3.5-9 GPa ranges, respectively. To reveal stress transfer mechanisms in each sample, tensile in-situ Raman spectroscopy testing was carried out. By monitoring the changes in bandwidth and position of Raman bands while stretching the film, useful information such as sheet slippage and cross-linker interactions were gathered. The addition of CNC enhanced modulus but degraded strength for both GO and rGO films. Interestingly, the Raman G-peak shift at failure, indicative of stress transfer to individual GO/rGO particles, is commensurate with the films’ strengths. Correlating these results with the structure and composition of different films reveals new understanding of stress transfer between GO/rGO particles, paving the way for the scalable manufacturing of strong and stiff GO-based films.more » « less
-
Abstract Graphene-based electrodes have been extensively investigated for supercapacitor applications. However, their ion diffusion efficiency is often hindered by the graphene restacking phenomenon. Even though holey graphene is fabricated to address this issue by providing ion transport channels, those channels could still be blocked by densely stacked graphene nanosheets. To tackle this challenge, this research aims at improving the ion diffusion efficiency of microwave-synthesized holey graphene films by tuning the water interlayer spacer towards the improved supercapacitor performance. By controlling the vacuum filtration during graphene-based electrode fabrication, we obtain dry films with dense packing and wet films with sparse packing. The SEM images reveal that 20 times larger interlayer distance is constructed in the wet film compared to that in the dry counterpart. The holey graphene wet film delivers a specific capacitance of 239 F/g, ~82% enhancement over the dry film (131 F/g). By an integrated experimental and computational study, we quantitatively show that the interlayer spacing in combination with the nanoholes in the basal plane dominates the ion diffusion rate in holey graphene-based electrodes. Our study concludes that novel hierarchical structures should be further considered even in holey graphene thin films to fully exploit the superior advantages of graphene-based supercapacitors.more » « less
-
Multifunctional coatings with simultaneous antibacterial and anticorrosive properties are essential for marine environments, oil and gas industry, medical settings, and domestic/public appliances to preserve integrity and functionality of pipes, instruments, and surfaces. In this work, we developed a simple and effective method to prepare graphene oxide (GO)-hybridized waterborne epoxy (GOWE) coating to simultaneously improve anticorrosive and antibacterial properties . The effects of different GO filler ratios (0.05, 0.1, and 0.5, 1 wt%) on the electrochemical and antibacterial behaviors of the waterborne epoxy coating were investigated over short- and long-term periods. The electrochemical behavior was analyzed with salt solution for 64 days. The antibacterial effect of GOWE coating was evaluated with Shewanella oneidensis (MR-1), which is a microorganism that can be involved in corrosion. Our results revealed that concentrations as low as 0.1 wt% of the GO was effective performance than the waterborne epoxy coating without graphene oxide. This result is due to the high hydrophilicity of the graphene oxide fillers, which allowed great dispersion in the waterborne epoxy coating matrix. Furthermore, this study used a corrosion relevant bacterium as a model organism, that is, Shewanella oneidensis (MR-1), which is more relevant for real-word applications. This as-prepared GO-hybridized waterborne polymeric hybrid film provides new insight into the application of 2D nanomaterial polymer composites for simultaneous anticorrosive and antibacterial applications.more » « less
An official website of the United States government

