Recent advancements in graph representation learning have shifted attention towards dynamic graphs, which exhibit evolving topologies and features over time. The increased use of such graphs creates a paramount need for generative models suitable for applications such as data augmentation, obfuscation, and anomaly detection. However, there are few generative techniques that handle continuously changing temporal graph data; existing work largely relies on augmenting static graphs with additional temporal information to model dynamic interactions between nodes. In this work, we propose a fundamentally different approach: We instead directly model interactions as a joint probability of an edge forming between two nodes at a given time. This allows us to autoregressively generate new synthetic dynamic graphs in a largely assumption free, scalable, and inductive manner. We formalize this approach as DG-Gen, a generative framework for continuous time dynamic graphs, and demonstrate its effectiveness over five datasets. Our experiments demonstrate that DG-Gen not only generates higher fidelity graphs compared to traditional methods but also significantly advances link prediction tasks.
more »
« less
Estimation of time-varying graph topologies from graph signals
In science and engineering, we often deal with signals that are acquired from time-varying systems represented by dynamic graphs. We observe these signals, and the interest is in finding the time-varying topology of the graphs. We propose two Bayesian methods for estimating these topologies without assuming any specific functional relationships among the signals on the graphs. The two methods exploit Gaussian processes, where the first method uses the length scale of the kernel and relies on variational inference for optimization, and the second method is based on derivatives of the functions and Monte Carlo sampling. Both methods estimate the time-varying topologies of the graphs sequentially. We provide numerical tests that show the performance of the methods in two settings.
more »
« less
- Award ID(s):
- 2212506
- PAR ID:
- 10417058
- Date Published:
- Journal Name:
- Conference record IEEE International Conference on Acoustics Speech and Signal Processing
- ISSN:
- 0749-842X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems using a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs). RiTINI leverages time-lapse signals on a graph prior, as well as perturbations of signals at various nodes in order to effectively capture the dynamics of the underlying system. This approach is distinct from traditional causal inference networks, which are limited to inferring acyclic and static graphs. In contrast, RiTINI can infer cyclic, directed, and time-varying graphs, providing a more comprehensive and accurate representation of complex systems. The graph attention mechanism in RiTINI allows the model to adaptively focus on the most relevant interactions in time and space, while the graph neural ODEs enable continuous-time modeling of the system’s dynamics. We evaluate RiTINI’s performance on simulations of dynamical systems, neuronal networks, and gene regulatory networks, demonstrating its state-of-the-art capability in inferring interaction graphs compared to previous methods.more » « less
-
A comprehensive understanding of the topology of the electric power transmission network (EPTN) is essential for reliable and robust control of power systems. While existing research primarily relies on domain-specific methods, it lacks data-driven approaches that have proven effective in modeling the topology of complex systems. To address this gap, this paper explores the potential of data-driven methods for more accurate and adaptive solutions to uncover the true underlying topology of EPTNs. First, this paper examines Gaussian Graphical Models (GGM) to create an EPTN network graph (i.e., undirected simple graph). Second, to further refine and validate this estimated network graph, a physics-based, domain specific refinement algorithm is proposed to prune false edges and construct the corresponding electric power flow network graph (i.e., directed multi-graph). The proposed method is tested using a synchrophasor dataset collected from a two-area, four-machine power system simulated on the real-time digital simulator (RTDS) platform. Experimental results show both the network and flow graphs can be reconstructed using various operating conditions and topologies with limited failure cases.more » « less
-
We present a novel framework to represent sets of time-varying signals as dynamic graphs using the non-negative kernel (NNK) graph construction. We extend the original NNK framework to allow explicit delays as part of the graph construction, so that unlike in NNK, two nodes can be connected with an edge corresponding to a non-zero time delay, if there is higher similarity between the signals after shifting one of them. We also propose to characterize the similarity between signals at different nodes using the node degree and clustering coefficients of their respective visibility graphs. Graph edges that can representing temporal delays, we provide a new perspective that enables us to see the effect of synchronization in graph construction for time-series signals. For both temperature and EEG datasets, we show that our proposed approach can achieve sparse and interpretable graph representations. Furthermore, the proposed method can be useful in characterizing different EEG experiments using sparsity.more » « less
-
The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity.more » « less
An official website of the United States government

