This content will become publicly available on April 1, 2025
- Award ID(s):
- 2327211
- NSF-PAR ID:
- 10536708
- Publisher / Repository:
- PMLR
- Date Published:
- ISSN:
- 2640-3498
- Subject(s) / Keyword(s):
- Graph learning, graph attention, dynamics systems
- Format(s):
- Medium: X
- Location:
- Virtual
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The ability to map causal interactions underlying genetic control and cellular signaling has led to increasingly accurate models of the complex biochemical networks that regulate cellular function. These network models provide deep insights into the organization, dynamics, and function of biochemical systems: for example, by revealing genetic control pathways involved in disease. However, the traditional representation of biochemical networks as binary interaction graphs fails to accurately represent an important dynamical feature of these multivariate systems: some pathways propagate control signals much more effectively than do others. Such heterogeneity of interactions reflects canalization—the system is robust to dynamical interventions in redundant pathways but responsive to interventions in effective pathways. Here, we introduce the effective graph, a weighted graph that captures the nonlinear logical redundancy present in biochemical network regulation, signaling, and control. Using 78 experimentally validated models derived from systems biology, we demonstrate that 1) redundant pathways are prevalent in biological models of biochemical regulation, 2) the effective graph provides a probabilistic but precise characterization of multivariate dynamics in a causal graph form, and 3) the effective graph provides an accurate explanation of how dynamical perturbation and control signals, such as those induced by cancer drug therapies, propagate in biochemical pathways. Overall, our results indicate that the effective graph provides an enriched description of the structure and dynamics of networked multivariate causal interactions. We demonstrate that it improves explainability, prediction, and control of complex dynamical systems in general and biochemical regulation in particular.more » « less
-
Inferring graph structure from observations on the nodes is an important and popular network science task. Departing from the more common inference of a single graph, we study the problem of jointly inferring multiple graphs from the observation of signals at their nodes (graph signals), which are assumed to be stationary in the sought graphs. Graph stationarity implies that the mapping between the covariance of the signals and the sparse matrix representing the underlying graph is given by a matrix polynomial. A prominent example is that of Markov random fields, where the inverse of the covariance yields the sparse matrix of interest. From a modeling perspective, stationary graph signals can be used to model linear network processes evolving on a set of (not necessarily known) networks. Leveraging that matrix polynomials commute, a convex optimization method along with sufficient conditions that guarantee the recovery of the true graphs are provided when perfect covariance information is available. Particularly important from an empirical viewpoint, we provide high-probability bounds on the recovery error as a function of the number of signals observed and other key problem parameters. Numerical experiments demonstrate the effectiveness of the proposed method with perfect covariance information as well as its robustness in the noisy regime.more » « less
-
Regulatory networks depict promoting or inhibiting interactions between molecules in a biochemical system. We introduce a category-theoretic formalism for regulatory networks, using signed graphs to model the networks and signed functors to describe occurrences of one network in another, especially occurrences of network motifs. With this foundation, we establish functorial mappings between regulatory networks and other mathematical models in biochemistry. We construct a functor from reaction networks, modeled as Petri nets with signed links, to regulatory networks, enabling us to precisely define when a reaction network could be a physical mechanism underlying a regulatory network. Turning to quantitative models, we associate a regulatory network with a Lotka-Volterra system of differential equations, defining a functor from the category of signed graphs to a category of parameterized dynamical systems. We extend this result from closed to open systems, demonstrating that Lotka-Volterra dynamics respects not only inclusions and collapsings of regulatory networks, but also the process of building up complex regulatory networks by gluing together simpler pieces. Formally, we use the theory of structured cospans to produce a lax double functor from the double category of open signed graphs to that of open parameterized dynamical systems. Throughout the paper, we ground the categorical formalism in examples inspired by systems biology.
-
Scene graph generation refers to the task of automatically mapping an image into a semantic structural graph, which requires correctly labeling each extracted object and their interaction relationships. Despite the recent success in object detection using deep learning techniques, inferring complex contextual relationships and structured graph representations from visual data remains a challenging topic. In this study, we propose a novel Attentive Relational Network that consists of two key modules with an object detection backbone to approach this problem. The first module is a semantic transformation module utilized to capture semantic embedded relation features, by translating visual features and linguistic features into a common semantic space. The other module is a graph self-attention module introduced to embed a joint graph representation through assigning various importance weights to neighboring nodes. Finally, accurate scene graphs are produced by the relation inference module to recognize all entities and the corresponding relations. We evaluate our proposed method on the widely-adopted Visual Genome dataset, and the results demonstrate the effectiveness and superiority of our model.more » « less
-
null (Ed.)Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less