skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Homogeneous versus MOF-supported catalysis: A direct comparison of catalytic hydroboration at Ni tripodal P 3 E (E = Si, Ge) complexes
MOF NU-1000 was employed to host Ni tripodal complexes prepared from new organometallic precursors [HNi(κ4(E,P,P,P)-E(o-C 6 H 4 CH 2 PPh 2 ) 3 ], E = Si (Ni-1), Ge (Ni-2). The new heterogenous catalytic materials, Ni-1@NU-1000 and Ni-2@NU-1000 show the advantages of both homogenous and heterogeneous catalysts. They catalyze the hydroboration of aldehydes and ketones more efficiently than the homogenous Ni-1 and Ni-2, under aerobic conditions, and allowing recyclability of the catalyst.  more » « less
Award ID(s):
2102689
PAR ID:
10417103
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
26
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Traditional MOF e‐CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi‐electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e‐CRR systems, CoPc@NU‐1000 and TPP(Co)@NU‐1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU‐1000 MOF. For CoPc@NU‐1000, the e‐CRR responsive CoI/0potential is close to that of NU‐1000 reduction compared to the TPP(Co)@NU‐1000. Efficient charge delivery, defined by a higher diffusion (Dhop=4.1×10−12 cm2 s−1) and low charge‐transport resistance (=59.5 Ω) in CoPC@NU‐1000 led FECO=80 %. In contrast, TPP(Co)@NU‐1000 fared a poor FECO=24 % (Dhop=1.4×10−12 cm2 s−1and=91.4 Ω). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation. 
    more » « less
  2. The new material [RuGa]@NU-1000 incorporates Ru and Ga in 1.2 and 1.8 wt% respectively (molar ratio 1 : 2). It stems from the grafting of the heterobimetallic ruthenium gallate complex, [MeRu(η 6 -C 6 H 6 )(PPh 3 ) 2 ][GaMe 2 Cl 2 ] into the MOF material NU-1000. [RuGa]@NU-1000 shows enhanced adsorption of SO 2 , specially at low pressures (10 −3 bar) even when compared with other materials employing more expensive precious metals. Additionally, [RuGa]@NU-1000 samples need not be exposed to such harsh conditions for reactivation as they retain their adsorption properties after several cycles and preserve their porosity and structure. Thus, [RuGa]@NU-1000 is an excellent, selective material suitable for detection and precise quantification of SO 2 , with a lower cost compared to other MOFs incorporating precious metals. 
    more » « less
  3. null (Ed.)
    The mechanism of ethene hydrogenation to ethane on six dicationic 3d transition metal catalysts is investigated. Specifically, a combination of density functional theory (DFT), microkinetic modeling, and high throughput reactor experiments is used to interrogate the active sites and mechanisms for Mn@NU-1000, Fe@NU-1000, Co@NU-1000, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000 catalysts, where NU-1000 is a metal–organic framework (MOF) capable of supporting metal cation catalysts. The combination of experiments and simulations suggests that the reaction mechanism is influenced by the electron configuration and spin state of the metal cations as well as the amount of hydrogen that is adsorbed. Specifically, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000, which have more electrons in their d shells and operate in lower spin states, utilize a metal hydride active site and follow a mechanism where the metal cation binds with one or more species at all steps, whereas Mn@NU-1000, Fe@NU-1000, and Co@NU-1000, which have fewer electrons in their d shells and operate in higher spin states, utilize a bare metal cation active site and follow a mechanism where the number of species that bind to the metal cation is minimized. Instead of binding with the metal cation, catalytic species bind with oxo ligands from the NU-1000 support, as this enables more facile H 2 adsorption. The results reveal opportunities for tuning activity and selectivity for hydrogenation on metal cation catalysts by tuning the properties that influence hydrogen content and spin, including the metal cations themselves, the ligands, the binding environments and supports, and/or the gas phase partial pressures. 
    more » « less
  4. The adsorption and detection of SO2 using Zr-based MOF, NU-1000 grafted with an organometallic nickel silylphosphine complex ([NiSi]@NU-1000) via post-synthetic modification are reported. [NiSi]@NU-1000 exhibits high stability under dry and wet SO2, with a high cyclability performance. Moreover, fluorescence experiments postulate [NiSi]@NU-1000 as a promising SO2 detector due to its high SO2 selectivity over CO2 and air, showing an evident quenching effect, especially at low SO2 concentrations (0.1 bar of SO2). Time-resolved photoluminescence experiments suggest that host-guest SO2 interactions are associated with the turn-off effect 
    more » « less
  5. Vaccines induce specific immunity through antigen uptake and processing. However, while nanoparticle vaccines have elevated uptake, the impact of intracellular protein release and how this affects processing and downstream responses are not fully understood. Herein, we reveal how tuning unmodified antigen release rate, specifically through modulation of metal–organic framework (MOF) pore size, influences the type and extent of raised adaptive immunity. We use two MOFs in the NU-100x series with 1.4 nm difference in pore diameter, employ facile postsynthesis loading to achieve significant internalization of model protein antigen ovalbumin (ca.1.4 mg/mg), and observe distinct antigen release and intracellular processing profiles influenced by MOF pore size. We investigate how this difference in release biases downstream CD8+, TH1, and TH2 T cell responses. Ovalbumin-loaded NU-1003 induced 1.8-fold higher CD8+:CD4+T cell proliferation ratio and displayed 2.2-fold greater ratio of CD4+TH1:TH2 cytokines compared to ovalbumin-loaded NU-1000. Antigen released from NU-1000 in vivo exhibited stronger antigen-specific IgG responses, which is dependent on CD4+T cells (up to ninefold stronger long-term antibody production and 5.9-fold higher IgG1:IgG2a ratio), compared to NU-1003. When translated to wild-type SARS-CoV-2 receptor-binding domain (RBD) protein, RBD-loaded NU-1000 induced 60.5-fold higher IgG1:IgG2a compared to NU-1003. Wild-type RBD-loaded NU-1000 immunization also induced a greater breadth of epitope recognition compared to NU-1003, as evidenced by increased binding antibodies to the Omicron RBD variant. Overall, this work highlights how antigen release significantly influences immunity induced by vaccines and offers a path to employ unmodified antigen release kinetics to drive personalized protective responses. 
    more » « less