skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student Perception on the Effectiveness of On-Demand Assistance in Online Learning Platforms
Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website.  more » « less
Award ID(s):
2225091
PAR ID:
10417146
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 15th International Conference on Educational Data Mining, International Educational Data Mining Society
Page Range / eLocation ID:
734-737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website. 
    more » « less
  2. Studies have proven that providing on-demand assistance, additional instruction on a problem when a student requests it, improves student learning in online learning environments. Additionally, crowdsourced, on-demand assistance generated from educators in the field is also effective. However, when provided on-demand assistance in these studies, students received assistance using problem-based randomization, where each condition represents a different assistance, for every problem encountered. As such, claims about a given educator’s effectiveness are provided on a per-assistance basis and not easily generalizable across all students and problems. This work aims to provide stronger claims on which educators are the most effective at generating on-demand assistance. Students will receive on-demand assistance using educator-based randomization, where each condition represents a different educator who has generated a piece of assistance, allowing students to be kept in the same condition over longer periods of time. Furthermore, this work also attempts to find additional benefits to providing students assistance generated by the same educator compared to a random assistance available for the given problem. All data and analysis being conducted can be found on the Open Science Foundation website 
    more » « less
  3. It has been shown in multiple studies that expert-created on-demand assistance, such as hint messages, improves student learning in online learning environments. However, there are also evident that certain types of assistance may be detrimental to student learning. In addition, creating and maintaining on-demand assistance are hard and time-consuming. In 2017-2018 academic year, 132,738 distinct problems were assigned inside ASSISTments, but only 38,194 of those problems had on-demand assistance. In order to take on-demand assistance to scale, we needed a system that is able to gather new on-demand assistance and allows us to test and measure its effectiveness. Thus, we designed and deployed TeacherASSIST inside ASSISTments. TeacherASSIST allowed teachers to create on-demand assistance for any problems as they assigned those problems to their students. TeacherASSIST then redistributed on-demand assistance by one teacher to students outside of their classrooms. We found that teachers inside ASSISTments had created 40,292 new instances of assistance for 25,957 different problems in three years. There were 14 teachers who created more than 1,000 instances of on-demand assistance. We also conducted two large-scale randomized controlled experiments to investigate how on-demand assistance created by one teacher affected students outside of their classes. Students who received on-demand assistance for one problem resulted in significant statistical improvement on the next problem performance. The students' improvement in this experiment confirmed our hypothesis that crowd-sourced on-demand assistance was sufficient in quality to improve student learning, allowing us to take on-demand assistance to scale. 
    more » « less
  4. It has been shown in multiple studies that expert-created on demand assistance, such as hint messages, improves student learning in online learning environments. However, there are also evident that certain types of assistance may be detrimental to student learning. In addition, creating and maintaining on-demand assistance are hard and time-consuming. In 2017-2018 academic year, 132,738 distinct problems were assigned inside ASSISTments, but only 38,194 of those problems had on-demand assistance. In order to take on-demand assistance to scale, we needed a system that is able to gather new on-demand assistance and allows us to test and measure its effectiveness. Thus, we designed and deployed TeacherASSIST inside ASSISTments. TeacherASSIST allowed teachers to create on demand assistance for any problems as they assigned those problems to their students. TeacherASSIST then redistributed on-demand assistance by one teacher to students outside of their classrooms. We found that teachers inside ASSISTments had created 40,292 new instances of assistance for 25,957 different problems in three years. There were 14 teachers who created more than 1,000 instances of on-demand assistance. We also conducted two large-scale randomized controlled experiments to investigate how on-demand assistance created by one teacher affected students outside of their classes. Students who received on-demand assistance for one problem resulted in significant statistical improvement on the next problem performance. The students’ improvement in this experiment confirmed our hypothesis that crowd-sourced on demand assistance was sufficient in quality to improve student learning, allowing us to take on-demand assistance to scale. 
    more » « less
  5. This Research Full Paper presents our findings of studying the effects of teaching modality on collaborative learning by comparing data from two sections of a Database Systems course offered simultaneously, with one offered fully face-to-face in a classroom setting while the other is offered online through a flipped-classroom model. Both sections utilized a collaborative learning approach where students work on group activities for part of the class meeting. Since the two sections were almost identical except for the teaching modality, we are provided with a unique opportunity to study the effect of teaching modalities on collaborative learning. As part of this study, we analyze four crucial data sources: 1) student performance data from the grade book 2) student performance data from the online learning management platform 3) an end-of-semester survey given by the instructor and 4) an end-of-semester survey given by the university. We extract insights on the impact of teaching modalities on collaborative learning in order to identify factors that can enhance collaborative learning. We also study the effect of teaching modalities on students’ performance. We visualize our findings to differentiate between the two modalities, and draw on the strengths of each section to establish recommendations for the instructors for course improvement efforts. 
    more » « less