skip to main content


Title: Student Perception on the Effectiveness of On-Demand Assistance in Online Learning Platforms
Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website.  more » « less
Award ID(s):
2225091
NSF-PAR ID:
10417146
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 15th International Conference on Educational Data Mining, International Educational Data Mining Society
Page Range / eLocation ID:
734-737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website. 
    more » « less
  2. Studies have proven that providing on-demand assistance, additional instruction on a problem when a student requests it, improves student learning in online learning environments. Additionally, crowdsourced, on-demand assistance generated from educators in the field is also effective. However, when provided on-demand assistance in these studies, students received assistance using problem-based randomization, where each condition represents a different assistance, for every problem encountered. As such, claims about a given educator’s effectiveness are provided on a per-assistance basis and not easily generalizable across all students and problems. This work aims to provide stronger claims on which educators are the most effective at generating on-demand assistance. Students will receive on-demand assistance using educator-based randomization, where each condition represents a different educator who has generated a piece of assistance, allowing students to be kept in the same condition over longer periods of time. Furthermore, this work also attempts to find additional benefits to providing students assistance generated by the same educator compared to a random assistance available for the given problem. All data and analysis being conducted can be found on the Open Science Foundation website 
    more » « less
  3. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
    more » « less
  4. The purpose of the project is to identify how to measure various types of institutional support as it pertains to underrepresented and underserved populations in colleges of engineering and science. We are grounding this investigation in the Model of Co-Curricular Support, a conceptual framework that emphasizes the breadth of assistance currently used to support undergraduate students in engineering and science. The results from our study will help prioritize the elements of institutional support that should appear somewhere in a college’s suite of support efforts to improve engineering and science learning environments and design effective programs, activities, and services. Our poster will present: 1) an overview of the instrument development process; 2) evaluation of the prototype for face and content validity from students and experts; and 3) instrument revision and data collection to determine test validity and reliability across varied institutional contexts. In evaluating the initial survey, we included multiple rounds of feedback from students and experts, receiving feedback from 46 participants (38 students, 8 administrators). We intentionally sampled for representation across engineering and science colleges; gender identity; race/ethnicity; international student status; and transfer student status. The instrument was deployed for the first time in Spring 2018 to the institutional project partners at three universities. It was completed by 722 students: 598 from University 1, 51 from University 2, and 123 from University 3. We tested the construct validity of these responses using a minimum residuals exploratory factor analysis and correlation. A preliminary data analysis shows evidence of differences in perception on types of support college of engineering and college of science students experience. The findings of this preliminary analysis were used to revise the instrument further prior to the next round of testing. Our target sample for the next instrument deployment is 2,000 students, so we will survey ~13,000 students based on a 15% anticipated response rate. Following data collection, we will use confirmatory factor analysis to continue establishing construct validity and report on the stability of constructs emerging from our piloting on a new student sample(s). We will also investigate differences across these constructs by subpopulations of students. 
    more » « less
  5. null (Ed.)
    Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, a teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context. 
    more » « less