skip to main content


Title: Using Video Analytics to Improve Traffic Intersection Safety and Performance
Road safety has always been a crucial priority for municipalities, as vehicle accidents claim lives every day. Recent rapid improvements in video collection and processing technologies enable traffic researchers to identify and alleviate potentially dangerous situations. This paper illustrates cutting-edge methods by which conflict hotspots can be detected in various situations and conditions. Both pedestrian–vehicle and vehicle–vehicle conflict hotspots can be discovered, and we present an original technique for including more information in the graphs with shapes. Conflict hotspot detection, volume hotspot detection, and intersection-service evaluation allow us to understand the safety and performance issues and test countermeasures comprehensively. The selection of appropriate countermeasures is demonstrated by extensive analysis and discussion of two intersections in Gainesville, Florida, USA. Just as important is the evaluation of the efficacy of countermeasures. This paper advocates for selection from a menu of countermeasures at the municipal level, with safety as the top priority. Performance is also considered, and we present a novel concept of a performance–safety trade-off at intersections.  more » « less
Award ID(s):
1922782
NSF-PAR ID:
10417157
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Vehicles
Volume:
4
Issue:
4
ISSN:
2624-8921
Page Range / eLocation ID:
1288 to 1313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a part of road safety initiatives, surrogate road safety approaches have gained popularity due to the rapid advancement of video collection and processing technologies. This paper presents an end-to-end software pipeline for processing traffic videos and running a safety analysis based on surrogate safety measures. We developed algorithms and software to determine trajectory movement and phases that, when combined with signal timing data, enable us to perform accurate event detection and categorization in terms of the type of conflict for both pedestrian-vehicle and vehicle-vehicle interactions. Using this information, we introduce a new surrogate safety measure, “severe event,” which is quantified by multiple existing metrics such as time-to-collision (TTC) and post-encroachment time (PET) as recorded in the event, deceleration, and speed. We present an efficient multistage event filtering approach followed by a multi-attribute decision tree algorithm that prunes the extensive set of conflicting interactions to a robust set of severe events. The above pipeline was used to process traffic videos from several intersections in multiple cities to measure and compare pedestrian and vehicle safety. Detailed experimental results are presented to demonstrate the effectiveness of this pipeline. 
    more » « less
  2. The widespread of geotagged data combined with modern map services allows for the accurate attachment of data to spatial networks. Applying statistical analysis, such as hotspot detection, over spatial networks is very important for precise quantification and patterns analysis, which empowers effective decision-making in various important applications. Existing hotspot detection algorithms on spatial networks either lack statistical evidence on detected hotspots, such as clustering, or they provide statistical evidence at a prohibitive computational overhead. In this paper, we propose efficient algorithms for detecting hotspots based on the network local K-function for predefined and unknown hotspot radii. The network local K-function is a widely adopted statistical approach for network pattern analysis that enables the understanding of the density and distribution of activities and events in the spatial network. However, its practical application has been limited due to the inefficiency of existing algorithms, particularly for large-sized networks. Extensive experimental evaluation using real and synthetic datasets shows that our algorithms are up to 28 times faster than the state-of-the-art algorithms in computing hotspots with a predefined radius and up to more than four orders of magnitude faster in identifying hotspots without a predefined radius. 
    more » « less
  3. Spatial hotspot discovery aims at discovering regions with statistically significant concentration of activities. It has shown great value in many important societal applications such as transportation engineering, public health, and public safety. This paper formulates the problem of Linear Hotspot Detection on All Simple Paths (LHDA) which identifies hotspots from the complete set of simple paths enumerated from a given spatial network. LHDA overcomes the limitations of existing methods which miss hotspots that naturally occur along linear simple paths on a road network. To address the computational challenges, we propose a novel algorithm named bidirectional fragment-multi-graph traversal (ASP_FMGT) and two path reduction approaches ASP_NR and ASP_HD. Experimental analyses show that ASP_FMGT has substantially improved performance over state-of-the-art approach (ASP_Base) while keeping the solution complete and correct. Moreover, a case study on real-world datasets showed that ASP_FMGT outperforms existing approaches. 
    more » « less
  4. Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31× reduction. 
    more » « less
  5. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less