skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A Modern Intersection Data Analytics System for Pedestrian and Vehicular Safety
As a part of road safety initiatives, surrogate road safety approaches have gained popularity due to the rapid advancement of video collection and processing technologies. This paper presents an end-to-end software pipeline for processing traffic videos and running a safety analysis based on surrogate safety measures. We developed algorithms and software to determine trajectory movement and phases that, when combined with signal timing data, enable us to perform accurate event detection and categorization in terms of the type of conflict for both pedestrian-vehicle and vehicle-vehicle interactions. Using this information, we introduce a new surrogate safety measure, “severe event,” which is quantified by multiple existing metrics such as time-to-collision (TTC) and post-encroachment time (PET) as recorded in the event, deceleration, and speed. We present an efficient multistage event filtering approach followed by a multi-attribute decision tree algorithm that prunes the extensive set of conflicting interactions to a robust set of severe events. The above pipeline was used to process traffic videos from several intersections in multiple cities to measure and compare pedestrian and vehicle safety. Detailed experimental results are presented to demonstrate the effectiveness of this pipeline.  more » « less
Award ID(s):
1922782
NSF-PAR ID:
10417182
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of 2022 IEEE International Intelligent Transportation Systems Conference (ITSC),
Page Range / eLocation ID:
3117 to 3124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Skateboarding as a method of transportation has become prevalent, which has increased the occurrence and likelihood of pedestrian–skateboarder collisions and near-collision scenarios in shared-use roadway areas. Collisions between pedestrians and skateboarders can result in significant injury. New approaches are needed to evaluate shared-use areas prone to hazardous pedestrian–skateboarder interactions, and perform real-time, in situ (e.g., on-device) predictions of pedestrian–skateboarder collisions as road conditions vary due to changes in land usage and construction. A mechanism called the Surrogate Safety Measures for skateboarder–pedestrian interaction can be computed to evaluate high-risk conditions on roads and sidewalks using deep learning object detection models. In this paper, we present the first ever skateboarder–pedestrian safety study leveraging deep learning architectures. We view and analyze state of the art deep learning architectures, namely the Faster R-CNN and two variants of the Single Shot Multi-box Detector (SSD) model to select the correct model that best suits two different tasks: automated calculation of Post Encroachment Time (PET) and finding hazardous conflict zones in real-time. We also contribute a new annotated data set that contains skateboarder–pedestrian interactions that has been collected for this study. Both our selected models can detect and classify pedestrians and skateboarders correctly and efficiently. However, due to differences in their architectures and based on the advantages and disadvantages of each model, both models were individually used to perform two different set of tasks. Due to improved accuracy, the Faster R-CNN model was used to automate the calculation of post encroachment time, whereas to determine hazardous regions in real-time, due to its extremely fast inference rate, the Single Shot Multibox MobileNet V1 model was used. An outcome of this work is a model that can be deployed on low-cost, small-footprint mobile and IoT devices at traffic intersections with existing cameras to perform on-device inferencing for in situ Surrogate Safety Measurement (SSM), such as Time-To-Collision (TTC) and Post Encroachment Time (PET). SSM values that exceed a hazard threshold can be published to an Message Queuing Telemetry Transport (MQTT) broker, where messages are received by an intersection traffic signal controller for real-time signal adjustment, thus contributing to state-of-the-art vehicle and pedestrian safety at hazard-prone intersections. 
    more » « less
  2. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  3. Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31× reduction. 
    more » « less
  4. Video cameras in smart cities can be used to provide data to improve pedestrian safety and traffic management. Video recordings inherently violate privacy, and technological solutions need to be found to preserve it. Smart city applications deployed on top of the COSMOS research testbed in New York City are envisioned to be privacy friendly. This contribution presents one approach to privacy preservation – a video anonymization pipeline implemented in the form of blurring of pedestrian faces and vehicle license plates. The pipeline utilizes customized deeplearning models based on YOLOv4 for detection of privacysensitive objects in street-level video recordings. To achieve real time inference, the pipeline includes speed improvements via NVIDIA TensorRT optimization. When applied to the video dataset acquired at an intersection within the COSMOS testbed in New York City, the proposed method anonymizes visible faces and license plates with recall of up to 99% and inference speed faster than 100 frames per second. The results of a comprehensive evaluation study are presented. A selection of anonymized videos can be accessed via the COSMOS testbed portal. 
    more » « less
  5. Road safety has always been a crucial priority for municipalities, as vehicle accidents claim lives every day. Recent rapid improvements in video collection and processing technologies enable traffic researchers to identify and alleviate potentially dangerous situations. This paper illustrates cutting-edge methods by which conflict hotspots can be detected in various situations and conditions. Both pedestrian–vehicle and vehicle–vehicle conflict hotspots can be discovered, and we present an original technique for including more information in the graphs with shapes. Conflict hotspot detection, volume hotspot detection, and intersection-service evaluation allow us to understand the safety and performance issues and test countermeasures comprehensively. The selection of appropriate countermeasures is demonstrated by extensive analysis and discussion of two intersections in Gainesville, Florida, USA. Just as important is the evaluation of the efficacy of countermeasures. This paper advocates for selection from a menu of countermeasures at the municipal level, with safety as the top priority. Performance is also considered, and we present a novel concept of a performance–safety trade-off at intersections. 
    more » « less