We present a study of the mechanical behavior of planar fibrous mats stabilized by inter-fiber adhesion. Fibers of various degrees of tortuosity and of infinite and finite length are considered in separate models. Fibers are randomly distributed, are not cross-linked, and interact through adhesion and friction. The variation of structural parameters such as the mat thickness and the mean segment length between contacts along given fibers with the strength of adhesion is determined. These systems are largely dissipative in that most of the work performed during deformation is dissipated frictionally and only a small fraction is stored as strain energy. The response of the mats to tensile loading has three regimes: a short elastic regime in which no sliding at contacts is observed, a well-defined sliding regime characterized by strain hardening, and a rapid stiffening regime at larger strains. The third regime is due to the formation of stress paths after the fiber tortuosity is pulled out and is absent in mats of finite length fibers. Networks of finite length fibers lose stability during the second regime of deformation. The scaling of the yield stress, which characterizes the transition between the first and the second regimes, and of the second regime's strain hardening modulus, with system parameters such as the strength of adhesion and friction and the degree of fiber tortuosity are determined. The strength of mats of finite length fibers is also determined as a function of network parameters. These results are expected to become useful in the design of electrospun mats and other planar fibrous non-cross-linked networks.
more »
« less
Compression of Fibrous Assemblies: Revisiting the Stress–Density Relation
Abstract Many engineering materials are made from fibers, and fibrous assemblies are often compacted during the fabrication process. Compression leads to the formation of contacts between fibers, and this causes stiffening. The relation between the uniaxial stress, S, and the volume fraction of fibers, φ, is of power law form. The derivation of this relation based on micromechanics considerations takes as input the structural evolution represented by the dependence of the mean segment length of the network, lc, on the current density, ρ (ρ is defined as the total length of fiber per unit volume of the network). In this work, we revisit this problem while considering that the mean segment length should be defined exclusively by fiber contacts that transmit load. We use numerical simulations of the compression of crimped fiber assemblies to show that, when using this definition, ρ∼1/lc2 at large enough strains. Purely geometric considerations require that ρ∼1/lc, and we observe that this applies in the early stages of compaction. In pre-stressed networks, the density–mean segment length scaling is of the form ρ∼1/lc2 at all strains. This has implications for the relation between stress and the fiber volume fraction. For both ρ versus lc scalings, S∼(φn−φ0n), where φ0 is the initial or reference fiber volume fraction; however, n = 3 when ρ∼1/lc and n = 2 for ρ∼1/lc2. These predictions are compared with experimental data from the literature.
more »
« less
- Award ID(s):
- 2022489
- PAR ID:
- 10417296
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 90
- Issue:
- 2
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal–Wallis test evaluated statistical significance. Pearson’s or Spearman’s test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = − 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = − 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.more » « less
-
Fiber-based materials are prevalent around us. While microscopically these systems resemble a discrete assembly of randomly interconnected fibers, the network architecture varies from one system to another. To identify the role of the network architecture, we study here cellular and fibrous random networks in tension and compression, and in the context of large strain elasticity. We observe that, compared to cellular networks of same global parameter set, fibrous networks exhibit in tension reduced strain stiffening, reduced fiber alignment, and reduced Poisson’s contraction in uniaxial tension. These effects are due to the larger number of kinematic constraints in the form of cross-links per fiber in the fibrous case. The dependence of the small strain modulus on network density is cubic in the fibrous case and quadratic in the cellular case. This difference persists when the number of cross-links per fiber in the fibrous case is rendered equal to that of the cellular case, which indicates that the different scaling is due to the higher structural disorder of the fibrous networks. The behavior of the two network types in compression is similar, although softening induced by fiber buckling and strain localization is less pronounced in the fibrous case. The contribution of transient interfiber contacts is weak in tension and important in compressionmore » « less
-
Fibrinolysis, the plasmin-mediated degradation of the fibrin mesh that stabilizes blood clots, is an important physiological process, and understanding mechanisms underlying lysis is critical for improved stroke treatment. Experimentalists are now able to study lysis on the scale of single fibrin fibers, but mathematical models of lysis continue to focus mostly on fibrin network degradation. Experiments have shown that while some degradation occurs along the length of a fiber, ultimately the fiber is cleaved at a single location. We built a 2-dimensional stochastic model of a fibrin fiber cross-section that uses the Gillespie algorithm to study single fiber lysis initiated by plasmin. We simulated the model over a range of parameter values to learn about patterns and rates of single fiber lysis in various physiological conditions. We also used epifluorescent microscopy to measure the cleavage times of fibrin fibers with different apparent diameters. By comparing our model results to the laboratory experiments, we were able to: 1) suggest value ranges for unknown rate constants(namely that the degradation rate of fibrin by plasmin should be ≤ 10 s−1and that if plasmin crawls, the rate of crawling should be between 10 s−1and 60 s−1); 2) estimate the fraction of fibrin within a fiber cross-section that must be degraded for the fiber to cleave in two; and 3) propose that that fraction is higher in thinner fibers and lower in thicker fibers. Collectively, this information provides more details about how fibrin fibers degrade, which can be leveraged in the future for a better understanding of why fibrinolysis is impaired in certain disease states, and could inform intervention strategies.more » « less
-
Adhesion plays an important role in the mechanics of nanoscale fibers such as various biological filaments, carbon nanotubes and artificial polymeric nanofibers. In this work we study assemblies of non-crosslinked filaments and characterize their adhesion-driven structural evolution and their final stable structure. The key parameters of the problem are the network density, the fiber length, the bending stiffness of fibers and the strength of adhesion. The system of fibers self-organizes in one of three types of structures: locked networks, in which fibers remain in the as-deposited state, cellular networks, in which fibers form bundles and these organize into a larger scale network, and disintegrated networks, in which the network of bundles becomes disconnected. We determine the parametric space corresponding to each of these structures. Further, we identify a triangular structure of bundles, similar to the Plateau triangle occurring in foams, which stabilizes the network of bundles and study in detail the stabilization mechanism. The analysis provides design guidelines and a physical picture of the stability and structure of random fiber networks with adhesion.more » « less
An official website of the United States government

