Peter Burgisser
(Ed.)
Suppose A = {a 1 , . . . , a n+2 } ⊂ Z n has cardinality n + 2, with all the coordinates of the a j having absolute value at most d, and the a j do not all lie in the same affine hyperplane. Suppose F = ( f 1 , . . . , f n ) is an n × n polynomial system with generic integer coefficients at most H in absolute value, and A the union of the sets of exponent vectors of the f i . We give the first algorithm that, for any fixed n, counts exactly the number of real roots of F in time polynomial in log(dH ). We also discuss a number- theoretic hypothesis that would imply a further speed-up to time polynomial in n as well.
more »
« less