skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Computing Euler factors of genus 2 curves at odd primes of almost good reduction
Abstract We present an efficient algorithm to compute the Euler factor of a genus 2 curve$$C/\mathbb {Q}$$ C / Q at an odd primepthat is of bad reduction forCbut of good reduction for the Jacobian ofC(a prime of “almost good” reduction). Our approach is based on the theory of cluster pictures introduced by Dokchitser, Dokchitser, Maistret, and Morgan, which allows us to reduce the problem to a short, explicit computation over$$\mathbb {Z}$$ Z and$$\mathbb {F}_p$$ F p , followed by a point-counting computation on two elliptic curves over$$\mathbb {F}_p$$ F p , or a single elliptic curve over$$\mathbb {F}_{p^2}$$ F p 2 . A key feature of our approach is that we avoid the need to compute a regular model forC. This allows us to efficiently compute many examples that are infeasible to handle using the algorithms currently available in computer algebra systems such as Magma and Pari/GP.  more » « less
Award ID(s):
2401305
PAR ID:
10626970
Author(s) / Creator(s):
;
Publisher / Repository:
SpringerNature
Date Published:
Journal Name:
Research in Number Theory
Volume:
11
Issue:
1
ISSN:
2522-0160
Page Range / eLocation ID:
37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a prime powerqand$$n \gg 1$$ n 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ q 3 q log q is realizable. 
    more » « less
  2. Abstract We complete the computation of all$$\mathbb {Q}$$ Q -rational points on all the 64 maximal Atkin-Lehner quotients$$X_0(N)^*$$ X 0 ( N ) such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levelsN, we classify all$$\mathbb {Q}$$ Q -rational points as cusps, CM points (including their CM field andj-invariants) and exceptional ones. We further indicate how to use this to compute the$$\mathbb {Q}$$ Q -rational points on all of their modular coverings. 
    more » « less
  3. Abstract The Chabauty–Kim method and its refined variant by Betts and Dogra aim to cut out theS-integral points$$X(\mathbb {Z}_S)$$ X ( Z S ) on a curve inside thep-adic points$$X(\mathbb {Z}_p)$$ X ( Z p ) by producing enough Coleman functions vanishing on them. We derive new functions in the case of the thrice-punctured line whenScontains two primes. We describe an algorithm for computing refined Chabauty–Kim loci and verify Kim’s Conjecture over$$\mathbb {Z}[1/6]$$ Z [ 1 / 6 ] for all choices of auxiliary prime $$p < 10{,}000$$ p < 10 , 000
    more » « less
  4. Abstract We define a type of modulus$$\operatorname {dMod}_p$$ dMod p for Lipschitz surfaces based on$$L^p$$ L p -integrable measurable differential forms, generalizing the vector modulus of Aikawa and Ohtsuka. We show that this modulus satisfies a homological duality theorem, where for Hölder conjugate exponents$$p, q \in (1, \infty )$$ p , q ( 1 , ) , every relative Lipschitzk-homology classchas a unique dual Lipschitz$$(n-k)$$ ( n - k ) -homology class$$c'$$ c such that$$\operatorname {dMod}_p^{1/p}(c) \operatorname {dMod}_q^{1/q}(c') = 1$$ dMod p 1 / p ( c ) dMod q 1 / q ( c ) = 1 and the Poincaré dual ofcmaps$$c'$$ c to 1. As$$\operatorname {dMod}_p$$ dMod p is larger than the classical surface modulus$$\operatorname {Mod}_p$$ Mod p , we immediately recover a more general version of the estimate$$\operatorname {Mod}_p^{1/p}(c) \operatorname {Mod}_q^{1/q}(c') \le 1$$ Mod p 1 / p ( c ) Mod q 1 / q ( c ) 1 , which appears in works by Freedman and He and by Lohvansuu. Our theory is formulated in the general setting of Lipschitz Riemannian manifolds, though our results appear new in the smooth setting as well. We also provide a characterization of closed and exact Sobolev forms on Lipschitz manifolds based on integration over Lipschitzk-chains. 
    more » « less
  5. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less