skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A metabolomic platform to identify and quantify polyphenols in coffee and related species using liquid chromatography mass spectrometry
Introduction Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family Rubiaceae is extremely diverse and abundant in Central America and contains several economically important genera, e.g. Coffea and other medicinal plants. These are known for the production of bioactive polyphenols (e.g. caffeine and quinine), which have had major impacts on human society. The overall goal of this study was to develop a high-throughput workflow to identify and quantify plant polyphenols. Methods First, a method was optimized to extract over 40 families of phytochemicals. Then, a high-throughput metabolomic platform has been developed to identify and quantify 184 polyphenols in 15 min. Results The current metabolomics study of secondary metabolites was conducted on leaves from one commercial coffee variety and two wild species that also belong to the Rubiaceae family. Global profiling was performed using liquid chromatography high-resolution time-of-flight mass spectrometry. Features whose abundance was significantly different between coffee species were discriminated using statistical analysis and annotated using spectral databases. The identified features were validated by commercially available standards using our newly developed liquid chromatography tandem mass spectrometry method. Discussion Caffeine, trigonelline and theobromine were highly abundant in coffee leaves, as expected. Interestingly, wild Rubiaceae leaves had a higher diversity of phytochemicals in comparison to commercial coffee: defense-related molecules, such as phenylpropanoids (e.g., cinnamic acid), the terpenoid gibberellic acid, and the monolignol sinapaldehyde were found more abundantly in wild Rubiaceae leaves.  more » « less
Award ID(s):
1638976 1638999
PAR ID:
10417423
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nakamura, Yuki (Ed.)
    Abstract Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography–mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues. 
    more » « less
  2. de_Paula, Renato G; Silva, Roberto N (Ed.)
    The fungal plant pathogen Slafractonia leguminicola produces two mycotoxins that affect animals: slaframine, which causes slobbers, and swainsonine, which causes locoism. Slafractonia leguminicola contains the swainsonine-associated orthologous gene clusters, “SWN”, which include a multifunctional swnK gene (NRPS-PKS hybrid), swnH1 and swnH2 (nonheme iron dioxygenase genes), swnN and swnR (reductase genes), and swnT (transmembrane transporter). In addition to these genes, two paralogs of swnK, swnK1 (paralog1) and swnk2 (paralog2), are found in S. leguminicola. cDNAs from total mRNA were isolated from the S. leguminicola mycelia grown in the culture plates as well as from leaves inoculated with the fungal mycelia at different time points, and expression pattern of the SWN genes were analyzed using RT-qPCR. The concentrations of swainsonine and slaframine production from this fungus at different time points were also examined using liquid chromatography–mass spectrometry. The timing of gene expression was similar in cultured fungus and inoculated leaves and agreed with our proposed biosynthetic pathway. Substantially more swainsonine was produced than slaframine during time course studies. 
    more » « less
  3. Abstract Contaminants of emerging concern (CECs), including pharmaceutical compounds, have been found in irrigation waters and have found their way into crops through the uptake of contaminated water. Many farms in Puerto Rico are irrigated with water that might have considerable levels of CECs. The objective of this study was to determine the quantity of commonly detected CEC adsorbed onto soil particles of two contrasting tropical soils of Puerto Rico (Fraternidad, basic Vertisol [fine, smectitic, isohyperthermic Typic Haplusterts], and Mariana series, acid Ultisol [fine, mixed, active, isohyperthermic Typic Haplohumults]). A CECs single point and multicomponent adsorption experiments were carried out using the batch equilibrium technique. The CECs were naproxen (NPX), O‐desmethylnaproxen (O‐DesNPX), caffeine (CFN), paraxanthine (PX), carbamazepine (CBZ), carbamazepine‐10, 11‐epoxide (Ep‐CBZ), clofibric acid (ClofA), and salicylic acid (SA). The CEC concentrations in water before and after adsorption were determined using a triple quadrupole mass spectroscopy liquid chromatography. The results showed that SA was highly adsorbed by both soils, although in greater concentrations in Fraternidad than Mariana, probably because of greater cation‐bridging. Paraxanthine was adsorbed only in the multicomponent test, probably as a co‐adsorbate. Caffeine, CBZ, and their metabolites were adsorbed in both soils in lesser concentrations than SA and PX. However, NPX and ClofA were not adsorbed by either soil type. Thus, these CECs could potentially move more freely through the soil matrix and reach soil roots in greater quantities than other contaminants. 
    more » « less
  4. SUMMARY Protein homeostasis (proteostasis) is crucial for proper cellular function, including the production of peptides with biological functions through controlled proteolysis. Proteostasis has roles in maintenance of cellular functions and plant interactions with the environment under physiological conditions. Plant stress continues to reduce agricultural yields causing substantial economic losses; thus, it is critical to understand how plants perceive stress signals to elicit responses for survival. As previously shown inArabidopsis thaliana, thimet oligopeptidases (TOPs) TOP1 (also referred to as organellar oligopeptidase) and TOP2 (also referred to as cytosolic oligopeptidase) are essential components in plant response to pathogens, but further characterization of TOPs and their peptide substrates is required to understand their contributions to stress perception and defense signaling. Herein, label‐free peptidomics via liquid chromatography‐tandem mass spectrometry was used to differentially quantify 1111 peptides, originating from 369 proteins, between the Arabidopsis Col‐0 wild type andtop1top2knock‐out mutant. This revealed 350 peptides as significantly more abundant in the mutant, representing accumulation of these potential TOP substrates. Ten direct substrates were validated usingin vitroenzyme assays with recombinant TOPs and synthetic candidate peptides. These TOP substrates are derived from proteins involved in photosynthesis, glycolysis, protein folding, biogenesis, and antioxidant defense, implicating TOP involvement in processes aside from defense signaling. Sequence motif analysis revealed TOP cleavage preference for non‐polar residues in the positions surrounding the cleavage site. Identification of these substrates provides a framework for TOP signaling networks, through which the interplay between proteolytic pathways and defense signaling can be further characterized. 
    more » « less
  5. Abstract Unpredictable variation in quality, including fresh pork water-holding capacity, remains challenging to pork processors and customers. Defining the diverse factors that influence fresh pork water-holding capacity is necessary to make progress in refining pork quality prediction methods. The objective was to utilize liquid chromatography and mass spectrometry coupled with tandem mass tag (TMT) multiplexing to evaluate the sarcoplasmic proteome of aged pork loins classified by purge loss. Fresh commercial pork loins were collected, aged 12 or 14 d postmortem, and pork quality and sensory attributes were evaluated. Chops were classified into Low (N = 27, average purge = 0.33%), Intermediate (N = 27, average purge = 0.72%), or High (N = 27, average purge = 1.19%) chop purge groups. Proteins soluble in a low-ionic strength buffer were extracted, digested with trypsin, labeled with 11-plex isobaric TMT reagents, and detected using a Q-Exactive Mass Spectrometer. Between the Low and High purge groups, 40 proteins were differentially (P < 0.05) abundant. The Low purge group had a greater abundance of proteins classified as structural and contractile, sarcoplasmic reticulum and calcium regulating, chaperone, and citric acid cycle enzymes than the High purge group. The presence of myofibrillar proteins in the aged sarcoplasmic proteome is likely due to postmortem degradation. These observations support our hypothesis that pork chops with low purge have a greater abundance of structural proteins in the soluble protein fraction. Together, these and other proteins in the aged sarcoplasmic proteome may be biomarkers of pork water-holding capacity. Additional research should establish the utility of these proteins as biomarkers early postmortem and over subsequent aging periods. 
    more » « less