Given the urgency of climate change, development of fast and reliable methods is essential to understand urban building energy use in the sector that accounts for 40% of total energy use in USA. Although machine learning (ML) methods may offer promise and are less difficult to develop, discrepancy in methods, results, and recommendations have emerged that requires attention. Existing research also shows inconsistencies related to integrating climate change models into energy modeling. To address these challenges, four models: random forest (RF), extreme gradient boosting (XGBoost), single regression tree, and multiple linear regression (MLR), were developed using the Commercial Building Energy Consumption Survey dataset to predict energy use intensity (EUI) under projected heating and cooling degree days by the Intergovernmental Panel on Climate Change (IPCC) across the USA during the 21st century. The RF model provided better performance and reduced the mean absolute error by 4%, 11%, and 12% compared to XGBoost, single regression tree, and MLR, respectively. Moreover, using the RF model for climate change analysis showed that office buildings’ EUI will increase between 8.9% to 63.1% compared to 2012 baseline for different geographic regions between 2030 and 2080. One region is projected to experience an EUI reduction of almost 1.5%. Finally, good data enhance the predicting ability of ML therefore, comprehensive regional building datasets are crucial to assess counteraction of building energy use in the face of climate change at finer spatial scale.
more »
« less
A Novel Hybrid Modeling Method for Predicting Energy Use of Hydronic Radiant Slab Systems
Accurately predicting the performance of radiant slab systems can be challenging due to the large thermal capacitance of the radiant slab and room temperature stratification. Current methods for predicting heating and cooling energy consumption of hydronic radiant slabs include detailed first-principles (e.g., finite difference) and reduced-order (e.g., thermal Resistor-Capacitor (RC) network) models. Creating and calibrating detailed first-principles models, as well as detailed RC network models for predicting the performance of radiant slabs require substantial effort. To develop improved control, monitoring, and diagnostic methods, there is a need for simpler models that can be readily trained using in-situ measurements. In this study, we explored a novel hybrid modeling method that integrates a simple RC network model with an evolving learning-based algorithm termed the Growing Gaussian Mixture Regression (GGMR) modeling approach to predict the heating and cooling rates of a radiant slab system for a Living Laboratory office space. The RC network model predicts heating or cooling load of the radiant slab system that is provided as an input to the GGMR model. Three modeling approaches were considered in this study: 1) an RC network model; 2) a GGMR model, and 3) the proposed hybrid modeling between RC and GGMR. The three modeling methods have been compared for predicting the energy use of a radiant slab system of a Living Laboratory office space using measurement data from January 15th to March 7th, 2022. The first two weeks of data were used for training, while the remaining data was used for testing of all three modeling methods. The hybrid approach had a Normalized Root Mean Square Error (NRMSE) of 15.46 percent (8.62 percent less than the RC-Model 3 alone and 19.36 percent less than the GGMR alone), a Coefficient of Variation of RMSE (CVRMSE) of 6.43 percent (3.59 percent less than the RC-Model 3 and 8.05 percent less than the GGMR), a Mean Absolute Error (MAE) of 3.61 kW (2.13 kW and 3.87 kW less than the RC-Model 3 and GGMR, respectively), and a Mean Absolute Percentage Error (MAPE) of 5.28 percent (3.85 percent and 3.92 percent lower than the RC-Model 3 and GGMR, respectively).
more »
« less
- Award ID(s):
- 1929209
- PAR ID:
- 10417460
- Date Published:
- Journal Name:
- International High Performance Buildings Conference
- Page Range / eLocation ID:
- 3470
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Faults in components (valves, sensors, etc.) of radiant floor heating and cooling systems affect the efficiency, cooling and heating capacity as well as the reliability of the system. While various fault detection and diagnostic (FDD) methods have been developed and tested for building systems, FDD algorithms for radiant heating and cooling systems have previously not been available. This paper presents an evolving learning-based FDD approach for a radiant floor heating and cooling system based on growing Gaussian mixture regression (GGMR). The experimental space was controlled with a building automation system (BAS) in which the operating conditions can be monitored, and control parameters can be overridden to desired values. Trend data for normal operation and faulty operation were collected. A total of six fault types with different severities in a radiant floor system were emulated through overriding control parameters. An FDD model based on the GGMR approach was developed with training data and the performance of the model was tested for "known" faults that were including in the training and new "unknown" faults that were implemented in the fault testing. The prediction accuracy for each known fault was extremely high with the lowest prediction accuracy of 98% for one of the faults. The algorithm was successful in detecting the new fault as an unknown state before evolving the model and in diagnosing it as a new fault after evolving the model.more » « less
-
null (Ed.)Buildings use 40% of the global energy consumption and emit 30% of the CO2 emissions [1]. Of the total building energy, 30-40% are for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. In the United States, most buildings use forced air technology to deliver heating/cooling to the targeted thermal zones. However, this system may cause complaints about thermal comfort from inhabitants due to excessive draft movement, inhomogeneous conditioning, and difficulty in accurately controlling the temperature for a system serving multiple rooms. Therefore, researchers have suggested using a radiant heating and cooling system as a better alternative to all-air systems to address these issues. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. In the cooling season, the radiant system often works with a separated dehumidifier to meet space latent and sensible cooling load (called separate sensible and latent cooling system SSLC). The SSLC has shown higher efficiency than forced air systems. However, it is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is suitable for forced air systems. Therefore, a new method shall be developed to evaluate the radiation system’s thermal comfort. In this paper, we review the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems.more » « less
-
Buildings use 40% of the global energy consumption and emit 30% of CO2 emissions. Of the total building energy, 30-40% is for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. Most buildings use forced air technology in the United States to deliver heating/cooling to the targeted thermal zones. Researchers have suggested using radiant heating and cooling systems as a better alternative to all-air systems. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. It is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is only suitable for forced air systems. A new plan shall be developed to evaluate the radiation system’s thermal comfort. This paper reviews the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems.more » « less
-
open-cathode proton exchange membrane; data-driven modeling; Koopman operator; physics-based modeling; control-oriented modeling (Ed.)Accurate modeling is crucial for the effective design and control of fuel cell stacks. Although physics-based models are widely used, data-driven methods such as the Koopman operator have not been fully explored for fuel cell modeling. In this paper, a Koopman-based approach is utilized to model the thermal dynamics of a 5 kW open cathode proton exchange membrane fuel cell stack. A physics-based model is used as the baseline for comparison. By varying the cooling fan rotational speed, the dynamics of the fuel cell stack were measured from the low load of near 0 kW to about 5 kW. Compared to experimental results, the steady-state absolute errors of Koopman-based models are within 3%. Additionally, once given sufficient dimension, the development effort required for the Koopman-based model is relatively low compared to the traditional physics-based approach, while still achieving a high level of accuracy. These findings suggest the Koopman operator may be a suitable alternative approach for fuel cell stack modeling that enables the development of more accurate and efficient modeling methods for fuel cell systems and facilitates the implementation of the linear optimal algorithms.more » « less
An official website of the United States government

