skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: SINCO: A Novel Structural Regularizer for Image Compression Using Implicit Neural Representations
Implicit neural representations (INR) have been recently proposed as deep learning (DL) based solutions for image compression. An image can be compressed by training an INR model with fewer weights than the number of image pixels to map the coordinates of the image to corresponding pixel values. While traditional training approaches for INRs are based on enforcing pixel-wise image consistency, we propose to further improve image quality by using a new structural regularizer. We present structural regularization for INR compression (SINCO) as a novel INR method for image compression. SINCO imposes structural consistency of the compressed images to the groundtruth by using a segmentation network to penalize the discrepancy of segmentation masks predicted from compressed images. We validate SINCO on brain MRI images by showing that it can achieve better performance than some recent INR methods.  more » « less
Award ID(s):
2043134
PAR ID:
10504929
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing
ISSN:
1520-6149
ISBN:
978-1-7281-6327-7
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Location:
Rhodes Island, Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a tool-pose-informed variable center morphological polar transform to enhance segmentation of endoscopic images. The representation, while not loss-less, transforms rigid tool shapes into morphologies consistently more rectangular that may be more amenable to image segmentation networks. The proposed method was evaluated using the U-Net convolutional neural network, and the input images from endoscopy were represented in one of the four different coordinate formats (1) the original rectangular image representation, (2) the morphological polar coordinate transform, (3) the proposed variable center transform about the tool-tip pixel and (4) the proposed variable center transform about the tool vanishing point pixel. Previous work relied on the observations that endoscopic images typically exhibit unused border regions with content in the shape of a circle (since the image sensor is designed to be larger than the image circle to maximize available visual information in the constrained environment) and that the region of interest (ROI) was most ideally near the endoscopic image center. That work sought an intelligent method for, given an input image, carefully selecting between methods (1) and (2) for best image segmentation prediction. In this extension, the image center reference constraint for polar transformation in method (2) is relaxed via the development of a variable center morphological transformation. Transform center selection leads to different spatial distributions of image loss, and the transform-center location can be informed by robot kinematic model and endoscopic image data. In particular, this work is examined using the tool-tip and tool vanishing point on the image plane as candidate centers. The experiments were conducted for each of the four image representations using a data set of 8360 endoscopic images from real sinus surgery. The segmentation performance was evaluated with standard metrics, and some insight about loss and tool location effects on performance are provided. Overall, the results are promising, showing that selecting a transform center based on tool shape features using the proposed method can improve segmentation performance. 
    more » « less
  2. Unsupervised domain adaptation for semantic segmentation has been intensively studied due to the low cost of the pixel-level annotation for synthetic data. The most common approaches try to generate images or features mimicking the distribution in the target domain while preserving the semantic contents in the source domain so that a model can be trained with annotations from the latter. However, such methods highly rely on an image translator or feature extractor trained in an elaborated mechanism including adversarial training, which brings in extra complexity and instability in the adaptation process. Furthermore, these methods mainly focus on taking advantage of the labeled source dataset, leaving the unlabeled target dataset not fully utilized. In this paper, we propose a bidirectional style-induced domain adaptation method, called BiSIDA, that employs consistency regularization to efficiently exploit information from the unlabeled target domain dataset, requiring only a simple neural style transfer model. BiSIDA aligns domains by not only transferring source images into the style of target images but also transferring target images into the style of source images to perform high-dimensional perturbation on the unlabeled target images, which is crucial to the success in applying consistency regularization in segmentation tasks. Extensive experiments show that our BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks: GTA5-to-CityScapes and SYNTHIA-to-CityScapes. Code and pretrained style transfer model are available at: https://github.com/wangkaihong/BiSIDA. 
    more » « less
  3. Puyol Anton, E; Pop, M; Sermesant, M; Campello, V; Lalande, A; Lekadir, K; Suinesiaputra, A; Camara, O; Young, A (Ed.)
    Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center, our method was generally able to produce accurate segmentations of cardiac structures. 
    more » « less
  4. In the field of materials science, microscopy is the first and often only accessible method for structural characterization. There is a growing interest in the development of machine learning methods that can automate the analysis and interpretation of microscopy images. Typically training of machine learning models requires large numbers of images with associated structural labels, however, manual labeling of images requires domain knowledge and is prone to human error and subjectivity. To overcome these limitations, we present a semi-supervised transfer learning approach that uses a small number of labeled microscopy images for training and performs as effectively as methods trained on significantly larger image datasets. Specifically, we train an image encoder with unlabeled images using self-supervised learning methods and use that encoder for transfer learning of different downstream image tasks (classification and segmentation) with a minimal number of labeled images for training. We test the transfer learning ability of two self-supervised learning methods: SimCLR and Barlow-Twins on transmission electron microscopy (TEM) images. We demonstrate in detail how this machine learning workflow applied to TEM images of protein nanowires enables automated classification of nanowire morphologies ( e.g. , single nanowires, nanowire bundles, phase separated) as well as segmentation tasks that can serve as groundwork for quantification of nanowire domain sizes and shape analysis. We also extend the application of the machine learning workflow to classification of nanoparticle morphologies and identification of different type of viruses from TEM images. 
    more » « less
  5. We propose to harness the potential of simulation for the semantic segmentation of real-world self-driving scenes in a domain generalization fashion. The segmentation network is trained without any data of target domains and tested on the unseen target domains. To this end, we propose a new approach of domain randomization and pyramid consistency to learn a model with high generalizability. First, we propose to randomize the synthetic images with the styles of real images in terms of visual appearances using auxiliary datasets, in order to effectively learn domain-invariant representations. Second, we further enforce pyramid consistency across different “stylized” images and within an image, in order to learn domaininvariant and scale-invariant features, respectively. Extensive experiments are conducted on the generalization from GTA and SYNTHIA to Cityscapes, BDDS and Mapillary; and our method achieves superior results over the stateof- the-art techniques. Remarkably, our generalization results are on par with or even better than those obtained by state-of-the-art simulation-to-real domain adaptation methods, which access the target domain data at training time. 
    more » « less