skip to main content


Title: Pyramid transform of manifold data via subdivision operators
Abstract Multiscale transforms have become a key ingredient in many data processing tasks. With technological development we observe a growing demand for methods to cope with nonlinear data structures such as manifold values. In this paper we propose a multiscale approach for analyzing manifold-valued data using a pyramid transform. The transform uses a unique class of downsampling operators that enable a noninterpolating subdivision schemes as upsampling operators. We describe this construction in detail and present its analytical properties, including stability and coefficient decay. Next, we numerically demonstrate the results and show the application of our method to denoising and anomaly detection.  more » « less
Award ID(s):
2009753
NSF-PAR ID:
10417487
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
Volume:
43
Issue:
1
ISSN:
0272-4979
Page Range / eLocation ID:
387 to 413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The manifold scattering transform is a deep feature extractor for data defined on a Riemannian manifold. It is one of the first examples of extending convolutional neural network-like operators to general manifolds. The initial work on this model focused primarily on its theoretical stability and invariance properties but did not provide methods for its numerical implementation except in the case of two-dimensional surfaces with predefined meshes. In this work, we present practical schemes, based on the theory of diffusion maps, for implementing the manifold scattering transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that our methods are effective for signal classification and manifold classification tasks. 
    more » « less
  2. Convolutional neural networks (CNNs) are revolutionizing imaging science for two- and three-dimensional images over Euclidean domains. However, many data sets are intrinsically non-Euclidean and are better modeled through other mathematical structures, such as graphs or manifolds. This state of affairs has led to the development of geometric deep learning, which refers to a body of research that aims to translate the principles of CNNs to these non-Euclidean structures. In the process, various challenges have arisen, including how to define such geometric networks, how to compute and train them efficiently, and what are their mathematical properties. In this letter we describe the geometric wavelet scattering transform, which is a type of geometric CNN for graphs and manifolds consisting of alternating multiscale geometric wavelet transforms and nonlinear activation functions. As the name suggests, the geometric wavelet scattering transform is an adaptation of the Euclidean wavelet scattering transform, first introduced by S. Mallat, to graph and manifold data. Like its Euclidean counterpart, the geometric wavelet scattering transform has several desirable properties. In the manifold setting these properties include isometric invariance up to a user specified scale and stability to small diffeomorphisms. Numerical results on manifold and graph data sets, including graph and manifold classification tasks as well as others, illustrate the practical utility of the approach. 
    more » « less
  3. Abstract

    Our previous multiscale graph basis dictionaries/graph signal transforms—Generalized Haar-Walsh Transform (GHWT); Hierarchical Graph Laplacian Eigen Transform (HGLET); Natural Graph Wavelet Packets (NGWPs); and their relatives—were developed for analyzing data recorded on vertices of a given graph. In this article, we propose their generalization for analyzing data recorded on edges, faces (i.e., triangles), or more generally$$\kappa $$κ-dimensional simplices of a simplicial complex (e.g., a triangle mesh of a manifold). The key idea is to use the Hodge Laplacians and their variants for hierarchical partitioning of a set of$$\kappa $$κ-dimensional simplices in a given simplicial complex, and then build localized basis functions on these partitioned subsets. We demonstrate their usefulness for data representation on both illustrative synthetic examples and real-world simplicial complexes generated from a co-authorship/citation dataset and an ocean current/flow dataset.

     
    more » « less
  4. The scattering transform is a multilayered, wavelet-based transform initially introduced as a mathematical model of convolutional neural networks (CNNs) that has played a foundational role in our understanding of these networks’ stability and invariance properties. In subsequent years, there has been widespread interest in extending the success of CNNs to data sets with non- Euclidean structure, such as graphs and manifolds, leading to the emerging field of geometric deep learning. In order to improve our understanding of the architectures used in this new field, several papers have proposed generalizations of the scattering transform for non-Euclidean data structures such as undirected graphs and compact Riemannian manifolds without boundary. Analogous to the original scattering transform, these works prove that these variants of the scattering transform have desirable stability and invariance properties and aim to improve our understanding of the neural networks used in geometric deep learning. In this paper, we introduce a general, unified model for geometric scattering on measure spaces. Our proposed framework includes previous work on compact Riemannian manifolds without boundary and undirected graphs as special cases but also applies to more general settings such as directed graphs, signed graphs, and manifolds with boundary. We propose a new criterion that identifies to which groups a useful representation should be invariant and show that this criterion is sufficient to guarantee that the scattering transform has desirable stability and invariance properties. Additionally, we consider finite measure spaces that are obtained from randomly sampling an unknown manifold. We propose two methods for constructing a data-driven graph on which the associated graph scattering transform approximates the scattering transform on the underlying manifold. Moreover, we use a diffusion-maps based approach to prove quantitative estimates on the rate of convergence of one of these approximations as the number of sample points tends to infinity. Lastly, we showcase the utility of our method on spherical images, a directed graph stochastic block model, and on high-dimensional single-cell data. 
    more » « less
  5. In this paper, we propose a new method to approach the problem of structural shape and topology optimization on manifold (or free-form surfaces). A manifold is conformally mapped onto a 2D rectangle domain, where the level set functions are defined. With conformal mapping, the corresponding covariant derivatives on a manifold can be represented by the Euclidean differential operators multiplied by a scalar. Therefore, the topology optimization problem on a free-form surface can be formulated as a 2D problem in the Euclidean space. To evolve the boundaries on a free-form surface, we propose a modified Hamilton-Jacobi equation and solve it on a 2D plane following the conformal geometry theory. In this way, we can fully utilize the conventional level-set-based computational framework. Compared with other established approaches which need to project the Euclidean differential operators to the manifold, the computational difficulty of our method is highly reduced while all the advantages of conventional level set methods are well preserved. We hope the proposed computational framework can provide a timely solution to increasing applications involving innovative structural designs on free-form surfaces in different engineering fields. 
    more » « less