skip to main content

Title: E-Cap Net: an efficient-capsule network for shallow and deepfakes forgery detection
Deepfakes represent the generation of synthetic/fake images or videos using deep neural networks. As the techniques used for the generation of deepfakes are improving, the threats including social media disinformation, defamation, impersonation, and fraud are becoming more prevalent. The existing deepfakes detection models, including those that use convolution neural networks, do not generalize well when subjected to multiple deepfakes generation techniques and cross-corpora setting. Therefore, there is a need for the development of effective and efficient deepfakes detection methods. To explicitly model part-whole hierarchical relationships by using groups of neurons to encode visual entities and learn the relationships between real and fake artifacts, we propose a novel deep learning model efficient-capsule network (E-Cap Net) for classifying the facial images generated through different deepfakes generative techniques. More specifically, we introduce a low-cost max-feature-map (MFM) activation function in each primary capsule of our proposed E-Cap Net. The use of MFM activation enables our E-Cap Net to become light and robust as it suppresses the low activation neurons in each primary capsule. Performance of our approach is evaluated on two standard, largescale and diverse datasets i.e., Diverse Fake Face Dataset (DFFD) and FaceForensics++ (FF++), and also on the World Leaders Dataset (WLRD). Moreover, we also performed a cross-corpora evaluation to show the generalizability of our method for reliable deepfakes detection. The AUC of 99.99% on DFFD, 99.52% on FF++, and 98.31% on WLRD datasets indicate the effectiveness of our method for detecting the manipulated facial images generated via different deepfakes techniques.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Multimedia Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A deepfake is content or material that is synthetically generated or manipulated using artificial intelligence (AI) methods, to be passed off as real and can include audio, video, image, and text synthesis. The key difference between manual editing and deepfakes is that deepfakes are AI generated or AI manipulated and closely resemble authentic artifacts. In some cases, deepfakes can be fabricated using AI-generated content in its entirety. Deepfakes have started to have a major impact on society with more generation mechanisms emerging everyday. This article makes a contribution in understanding the landscape of deepfakes, and their detection and generation methods. We evaluate various categories of deepfakes especially in audio. The purpose of this survey is to provide readers with a deeper understanding of (1) different deepfake categories; (2) how they could be created and detected; (3) more specifically, how audio deepfakes are created and detected in more detail, which is the main focus of this paper. We found that generative adversarial networks (GANs), convolutional neural networks (CNNs), and deep neural networks (DNNs) are common ways of creating and detecting deepfakes. In our evaluation of over 150 methods, we found that the majority of the focus is on video deepfakes, and, in particular, the generation of video deepfakes. We found that for text deepfakes, there are more generation methods but very few robust methods for detection, including fake news detection, which has become a controversial area of research because of the potential heavy overlaps with human generation of fake content. Our study reveals a clear need to research audio deepfakes and particularly detection of audio deepfakes. This survey has been conducted with a different perspective, compared to existing survey papers that mostly focus on just video and image deepfakes. This survey mainly focuses on audio deepfakes that are overlooked in most of the existing surveys. This article's most important contribution is to critically analyze and provide a unique source of audio deepfake research, mostly ranging from 2016 to 2021. To the best of our knowledge, this is the first survey focusing on audio deepfakes generation and detection in English. 
    more » « less
  2. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository ( -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. 
    more » « less
  3. By employing generative deep learning techniques, Deepfakes are created with the intent to create mistrust in society, manipulate public opinion and political decisions, and for other malicious purposes such as blackmail, scamming, and even cyberstalking. As realistic deepfake may involve manipulation of either audio or video or both, thus it is important to explore the possibility of detecting deepfakes through the inadequacy of generative algorithms to synchronize audio and visual modalities. Prevailing performant methods, either detect audio or video cues for deepfakes detection while few ensemble the results after predictions on both modalities without inspecting relationship between audio and video cues. Deepfake detection using joint audiovisual representation learning is not explored much. Therefore, this paper proposes a unified multimodal framework, Multimodaltrace, which extracts learned channels from audio and visual modalities, mixes them independently in IntrAmodality Mixer Layer (IAML), processes them jointly in IntErModality Mixer Layers (IEML) from where it is fed to multilabel classification head. Empirical results show the effectiveness of the proposed framework giving state-of-the-art accuracy of 92.9% on the FakeAVCeleb dataset. The cross-dataset evaluation of the proposed framework on World Leaders and Presidential Deepfake Detection Datasets gives an accuracy of 83.61% and 70% respectively. The study also provides insights into how the model focuses on different parts of audio and visual features through integrated gradient analysis 
    more » « less
  4. Easy access to audio-visual content on social media, combined with the availability of modern tools such as Tensorflow or Keras, and open-source trained models, along with economical computing infrastructure, and the rapid evolution of deep-learning (DL) methods have heralded a new and frightening trend. Particularly, the advent of easily available and ready to use Generative Adversarial Networks (GANs), have made it possible to generate deepfakes media partially or completely fabricated with the intent to deceive to disseminate disinformation and revenge porn, to perpetrate financial frauds and other hoaxes, and to disrupt government functioning. Existing surveys have mainly focused on the detection of deepfake images and videos; this paper provides a comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for deepfake generation, and the methodologies used to detect such manipulations in both audio and video. For each category of deepfake, we discuss information related to manipulation approaches, current public datasets, and key standards for the evaluation of the performance of deepfake detection techniques, along with their results. Additionally, we also discuss open challenges and enumerate future directions to guide researchers on issues which need to be considered in order to improve the domains of both deepfake generation and detection. This work is expected to assist readers in understanding how deepfakes are created and detected, along with their current limitations and where future research may lead. 
    more » « less
  5. Aliannejadi, M ; Faggioli, G ; Ferro, N ; Vlachos, M. (Ed.)
    This work discusses the participation of CS_Morgan in the Concept Detection and Caption Prediction tasks of the ImageCLEFmedical 2023 Caption benchmark evaluation campaign. The goal of this task is to automatically identify relevant concepts and their locations in images, as well as generate coherent captions for the images. The dataset used for this task is a subset of the extended Radiology Objects in Context (ROCO) dataset. The implementation approach employed by us involved the use of pre-trained Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and Text-to-Text Transfer Transformer (T5) architectures. These models were leveraged to handle the different aspects of the tasks, such as concept detection and caption generation. In the Concept Detection task, the objective was to classify multiple concepts associated with each image. We utilized several deep learning architectures with ‘sigmoid’ activation to enable multilabel classification using the Keras framework. We submitted a total of five (5) runs for this task, and the best run achieved an F1 score of 0.4834, indicating its effectiveness in detecting relevant concepts in the images. For the Caption Prediction task, we successfully submitted eight (8) runs. Our approach involved combining the ViT and T5 models to generate captions for the images. For the caption prediction task, the ranking is based on the BERTScore, and our best run achieved a score of 0.5819 based on generating captions using the fine-tuned T5 model from keywords generated using the pretrained ViT as the encoder. 
    more » « less