skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precision Dosing in Critical Care: Application of Machine Learning in Fluid Therapy
Fluid therapy is a common treatment for hypovolemic scenarios to restore the lost blood volume and stabilize acutely ill patients. Automating fluid therapy can lead to a reduction of delay in care, a decrement in dosing errors, and a reduction of cognitive load on clinicians responsible for patient care resulting in improved patient outcomes. However, this process is highly challenging due to the complexity of patient’s physiology and the variability of hemodynamic responses among patients. This work presents a novel machine learning approach based on reinforcement learning (RL) for automated fluid management, where the RL agent is designed to recommend subject-specific infusion dosages without having the knowledge of dose-response models and only by interacting with the environment (virtual subject generator). Compared to the state-of-the-art focusing on the entire population’s data, the proposed approach uses individual patient’s data to recommend patient-specific fluid dosage adjustment. Simulation results demonstrate that the proposed approach outperforms a proportional-integral-derivative (PID) and a rule-based fluid resuscitation controller previously reported for an animal study.  more » « less
Award ID(s):
2138929
PAR ID:
10417515
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4103-4
Subject(s) / Keyword(s):
Machine learning reinforcement learning fluid management automated fluid therapy mean arterial pressure
Format(s):
Medium: X
Location:
Chicago, IL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundHypertension is a prevalent cardiovascular disease with severe longer-term implications. Conventional management based on clinical guidelines does not facilitate personalized treatment that accounts for a richer set of patient characteristics. MethodsRecords from 1/1/2012 to 1/1/2020 at the Boston Medical Center were used, selecting patients with either a hypertension diagnosis or meeting diagnostic criteria (≥ 130 mmHg systolic or ≥ 90 mmHg diastolic, n = 42,752). Models were developed to recommend a class of antihypertensive medications for each patient based on their characteristics. Regression immunized against outliers was combined with a nearest neighbor approach to associate with each patient an affinity group of other patients. This group was then used to make predictions of future Systolic Blood Pressure (SBP) under each prescription type. For each patient, we leveraged these predictions to select the class of medication that minimized their future predicted SBP. ResultsThe proposed model, built with a distributionally robust learning procedure, leads to a reduction of 14.28 mmHg in SBP, on average. This reduction is 70.30% larger than the reduction achieved by the standard-of-care and 7.08% better than the corresponding reduction achieved by the 2nd best model which uses ordinary least squares regression. All derived models outperform following the previous prescription or the current ground truth prescription in the record. We randomly sampled and manually reviewed 350 patient records; 87.71% of these model-generated prescription recommendations passed a sanity check by clinicians. ConclusionOur data-driven approach for personalized hypertension treatment yielded significant improvement compared to the standard-of-care. The model implied potential benefits of computationally deprescribing and can support situations with clinical equipoise. 
    more » « less
  2. Background Lung volume reduction surgery (LVRS) and medical therapy are 2 available treatment options in dealing with severe emphysema, which is a chronic lung disease. However, or there are currently limited guidelines on the timing of LVRS for patients with different characteristics. Objective The objective of this study is to assess the timing of receiving LVRS in terms of patient outcomes, taking into consideration a patient’s characteristics. Methods A finite-horizon Markov decision process model for patients with severe emphysema was developed to determine the short-term (5 y) and long-term timing of emphysema treatment. Maximizing the expected life expectancy, expected quality-adjusted life-years, and total expected cost of each treatment option were applied as the objective functions of the model. To estimate parameters in the model, the data provided by the National Emphysema Treatment Trial were used. Results The results indicate that the treatment timing strategy for patients with upper-lobe predominant emphysema is to receive LVRS regardless of their specific characteristics. However, for patients with non–upper-lobe–predominant emphysema, the optimal strategy depends on the age, maximum workload level, and forced expiratory volume in 1 second level. Conclusion This study demonstrates the utilization of clinical trial data to gain insights into the timing of surgical treatment for patients with emphysema, considering patient age, observable health condition, and location of emphysema. Highlights Both short-term and long-term Markov decision process models were developed to assess the timing of receiving lung volume reduction surgery in patients with severe emphysema. How clinical trial data can be used to estimate the parameters and obtain short-term results from the Markov decision process model is demonstrated. The results provide insights into the timing of receiving lung volume reduction surgery as a function of a patient’s characteristics, including age, emphysema location, maximum workload, and forced expiratory volume in 1 second level. 
    more » « less
  3. Health care–associated infections due to multidrug-resistant organisms (MDROs), such as methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile (CDI), place a significant burden on our health care infrastructure. Screening for MDROs is an important mechanism for preventing spread but is resource intensive. The objective of this study was to develop automated tools that can predict colonization or infection risk using electronic health record (EHR) data, provide useful information to aid infection control, and guide empiric antibiotic coverage. We retrospectively developed a machine learning model to detect MRSA colonization and infection in undifferentiated patients at the time of sample collection from hospitalized patients at the University of Virginia Hospital. We used clinical and nonclinical features derived from on-admission and throughout-stay information from the patient’s EHR data to build the model. In addition, we used a class of features derived from contact networks in EHR data; these network features can capture patients’ contacts with providers and other patients, improving model interpretability and accuracy for predicting the outcome of surveillance tests for MRSA. Finally, we explored heterogeneous models for different patient subpopulations, for example, those admitted to an intensive care unit or emergency department or those with specific testing histories, which perform better. We found that the penalized logistic regression performs better than other methods, and this model’s performance measured in terms of its receiver operating characteristics-area under the curve score improves by nearly 11% when we use polynomial (second-degree) transformation of the features. Some significant features in predicting MDRO risk include antibiotic use, surgery, use of devices, dialysis, patient’s comorbidity conditions, and network features. Among these, network features add the most value and improve the model’s performance by at least 15%. The penalized logistic regression model with the same transformation of features also performs better than other models for specific patient subpopulations. Our study shows that MRSA risk prediction can be conducted quite effectively by machine learning methods using clinical and nonclinical features derived from EHR data. Network features are the most predictive and provide significant improvement over prior methods. Furthermore, heterogeneous prediction models for different patient subpopulations enhance the model’s performance. 
    more » « less
  4. Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data available from electronic health records (EHR). In this pilot study, we explore the benefits of augmenting existing EHR data with novel measurements from wrist-worn activity sensors as part of a clinical environment known as the Intelligent ICU. We implemented temporal deep learning models based on two distinct sources of patient data: (1) routinely measured vital signs from electronic health records, and (2) activity data collected from wearable sensors. As a proxy for illness severity, our models predicted whether patients leaving the intensive care unit would be successfully or unsuccessfully discharged from the hospital. We overcome the challenge of small sample size in our prospective cohort by applying deep transfer learning using EHR data from a much larger cohort of traditional ICU patients. Our experiments quantify added utility of non-traditional measurements for predicting patient health, especially when applying a transfer learning procedure to small novel Intelligent ICU cohorts of critically ill patients. 
    more » « less
  5. In precision medicine, the ultimate goal is to recommend the most effective treatment to an individual patient based on patient‐specific molecular and clinical profiles, possibly high‐dimensional. To advance cancer treatment, large‐scale screenings of cancer cell lines against chemical compounds have been performed to help better understand the relationship between genomic features and drug response; existing machine learning approaches use exclusively supervised learning, including penalized regression and recommender systems. However, it would be more efficient to apply reinforcement learning to sequentially learn as data accrue, including selecting the most promising therapy for a patient given individual molecular and clinical features and then collecting and learning from the corresponding data. In this article, we propose a novel personalized ranking system called Proximal Policy Optimization Ranking (PPORank), which ranks the drugs based on their predicted effects per cell line (or patient) in the framework of deep reinforcement learning (DRL). Modeled as a Markov decision process, the proposed method learns to recommend the most suitable drugs sequentially and continuously over time. As a proof‐of‐concept, we conduct experiments on two large‐scale cancer cell line data sets in addition to simulated data. The results demonstrate that the proposed DRL‐based PPORank outperforms the state‐of‐the‐art competitors based on supervised learning. Taken together, we conclude that novel methods in the framework of DRL have great potential for precision medicine and should be further studied. 
    more » « less