We present an analysis of Epoch of Reionization (EoR) data from Phase II of the Murchison Widefield Array using the simpleds delay spectrum pipeline. Prior work analysed the same observations using the fhd/εppsilon imaging pipeline, and so the present analysis represents the first time that both principal types of 21 cm cosmology power spectrum estimation approaches have been applied to the same data set. Our limits on the 21 cm power spectrum amplitude span a range in k space of $|k| \lt 1 \, h_{100}\, {\rm Mpc}^{-1}$ with a lowest measurement of Δ2(k) ≤ 4.58 × 103 mK2 at $k = 0.190\, h_{100}\, \rm {Mpc}^{-1}$ and z = 7.14. In order to achieve these limits, we need to mitigate a previously unidentified common mode systematic in the data set. If not accounted for, this systematic introduces an overall negative bias that can make foreground contaminated measurements appear as stringent, noise-limited constraints on the 21 cm signal amplitude. The identification of this systematic highlights the risk in modelling systematics as positive-definite contributions to the power spectrum and in ‘conservatively’ interpreting all measurements as upper limits.
Upper limits from the current generation of interferometers targeting the 21-cm signal from high redshifts have recently begun to rule out physically realistic, though still extreme, models of the Epoch of Reionization (EoR). While inferring the detailed properties of the first galaxies is one of the most important motivations for measuring the high-z 21-cm signal, they can also provide useful constraints on the properties of the intergalactic medium (IGM). Motivated by this, we build a simple, phenomenological model for the 21-cm power spectrum that works directly in terms of IGM properties, which bypasses the computationally expensive 3D semi-numerical modeling generally employed in inference pipelines and avoids explicit assumptions about galaxy properties. The key simplifying assumptions are that (i) the ionization field is binary, and composed of spherical bubbles with an abundance described well by a parametric bubble size distribution, and (ii) that the spin temperature of the ‘bulk’ IGM outside bubbles is uniform. Despite the simplicity of the model, the mean ionized fraction and spin temperature of the IGM recovered from mock 21-cm power spectra generated with 21cm fast are generally in good agreement with the true input values. This suggests that it is possible to obtain comparable constraints on the IGM using models with very different assumptions, parameters, and priors. Our approach will thus be complementary to semi-numerical models as upper limits continue to improve in the coming years.
more » « less- NSF-PAR ID:
- 10417543
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 514
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2010-2030
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Different star formation models at Cosmic Dawn produce detectable signatures in the observables of upcoming 21-cm experiments. In this work, we consider the physical scenario of feedback-free starbursts (FFB), according to which the star formation efficiency (SFE) is enhanced in sufficiently massive haloes at early enough times, thus explaining the indication from the JWST for an excess of bright galaxies at $z \ge 10$. We model the contribution of FFBs to popII SFE and compute the impact these have on the 21-cm global signal and power spectrum. We show that FFBs affect the evolution of the brightness temperature and the 21-cm power spectrum, but they only have a limited effect on the neutral hydrogen fraction. We investigate how the observables are affected by changes in the underlying star formation model and by contribution from popIII stars. Finally, we forecast the capability of next-generation Hydrogen Epoch of Reionization Array (HERA) to detect the existence of FFB galaxies via power spectrum measurements. Our results show the possibility of a significant detection, provided that popII stars are the main drivers of lowering the spin temperature. Efficient popIII star formation will make the detection more challenging.
-
ABSTRACT Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.
-
Abstract Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment’s first upper limits on the power spectrum of 21 cm fluctuations at
z ∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold byz ∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of thez ∼ 8 neutral IGM to 27 K 630 K (2.3 K 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates thez ∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. Thez ∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities ofL r ,ν /SFR > 4 × 1024W Hz−1 yr andL X /SFR < 7.6 × 1039erg s−1 yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results. -
ABSTRACT Through a very careful analysis Kolopanis and collaborators identified a negative power spectrum (PS) systematic. The 21 cm cosmology community has assumed that any observational systematics would add power, as negative PS are non-physical. In addition to the mystery of their origin, negative PS systematics raise the spectre of artificially lowering upper limits on the 21 cm PS. It appears that the source of the negative PS systematics is a subtle interaction between choices in how the PS estimate is calculated and baseline-dependent systematic power. In this paper, we present a statistical model of baseline dependent systematics to explore how negative PS systematics can appear and their statistical characteristics. This leads us to recommendations on when and how to consider negative PS systematics when reporting observational 21 cm cosmology upper limits.