skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An experimental study of volcanic tremor driven by magma wagging
SUMMARY Protracted episodes of 0.5–7 Hz pre-eruptive volcanic tremor (PVT) are common at active stratovolcanoes. Reliable links to processes related to magma movement consequently enable a potential to use properties of PVT as diagnostic eruptive precursors. A challenging feature of PVT is that generic spectral and amplitude properties of the signal evolve similarly, independent of widely varying volcano structures and conduit geometries on which most physical models rely. The ‘magma wagging’ model introduced in Jellinek & Bercovici (2011) and extended by Bercovici et al. (2013), Liao et al. and Liao & Bercovici (2018) makes progress because it depends on magma dynamics that are only weakly sensitive to volcano architecture: The flow of gas through a permeable foamy annulus of gas bubbles excites, modulates and maintains a wagging oscillation of a central magma column rising in an erupting conduit. ‘Magma wagging’ and resulting PVT are driven through an energy transfer from a ‘Bernoulli mode’ related to azimuthal variations in annular gas flow speeds. Consistent with observations, spectral and amplitude properties of PVT are predicted to evolve before an eruption as the width of the annulus decreases with increased gas fluxes. To confirm this critical Bernoulli-to-wagging energy transfer we use extensive experiments and restricted numerical simulations on wagging oscillations excited on analogue viscoelastic columns by annular air flows. We also explore sensitivities of the spatial and temporal characters of wagging to asymmetric annular air flows that are intractable in the existing magma wagging model and expected to occur in nature with spatial variations in annulus permeability. From high-resolution time-series of linear and orbital displacements of analogue column tops and time-series of axial deflections and accelerations of the column centre line, we characterize the excitation, evolution, and steady-state oscillations in unprecedented detail over a broad range of conditions. We show that the Bernoulli mode corresponds to the timescale for the buildup of axial elastic bending stresses in response to pressure variations related to air flows over the heights of columns. We identify three distinct wagging modes: (i) rotational (cf. Liao et al. 2018); (ii) mixed-mode and (iii) chaotic. Rotational modes are favoured for symmetric, high intensity forcing and a maximal delivery of mechanical energy to the fundamental magma wagging mode. Mixed-mode oscillations regimes are favoured for a symmetric, intermediate intensity forcing. Chaotic modes, involving the least efficient delivery of energy to the fundamental mode, occur for asymmetric forcing and where the intensity of imposed airflow is low. Numerical simulations also show that where forcing frequencies are comparable to a natural mode of free oscillation, power delivered by peripheral air flows is concentrated at the lowest frequency fundamental mode generally and spread among higher frequency natural modes where air pressure and column elastic forces are comparable. Our combined experimental and numerical results make qualitative predictions for the evolution of the character of volcanic tremor and its expression in seismic or infrasound arrays during natural events that is testable in field-based studies of PVT and syn-eruptive volcanic tremor.  more » « less
Award ID(s):
1645057
PAR ID:
10306415
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
228
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 1577-1606
Size(s):
p. 1577-1606
Sponsoring Org:
National Science Foundation
More Like this
  1. Many volcanoes emit a significant portion of the gas they transport to the atmosphere during continual passive degassing rather than during eruptions. To maintain a high gas and thermal flux without erupting magma, the flow field in the volcanic conduit must be approximately balanced with gas-rich, buoyant magma ascending and degassed, heavy magma descending. In vertical conduits, this exchange flow takes the form of core–annular flow, where the gas-rich magma forms a core enclosed by an annulus of degassed magma. The flow dynamics of core–annular flow have been studied extensively in fluid dynamics, but mostly for constant material properties. Our study aims to advance our understanding of how core–annular flow responds to volatile exsolution – a simple, yet ubiquitous disruption in volcanic conduits, which alters both the density and the viscosity of the core fluid. By deriving an evolution equation for the core–annular interface based on a generalized exchange-flow condition using a lubrication approximation, we find that the response of the system to volatile exsolution depends on the conduit flow regime. The same nucleation event can lead to a flow adjustment only in the upper, only in the lower or in both portions of the volcanic conduit. Our results emphasize that the thermodynamic evolution of magma properties and volcanic conduit flow are intricately linked, which may help understand the observed variability of eruptive behaviour at persistently degassing volcanoes. 
    more » « less
  2. The intensity of explosive volcanic eruptions is correlated with the amplitude of eruption tremor, a ubiquitously observed seismic signal during eruptions. Here we expand upon a recently introduced theoretical model that attributes eruption tremor to particle impacts and dynamic pressure changes in the turbulent flow above fragmentation (Gestrich et al., 2020). We replace their point source model with Rayleigh wave Green's functions with full Green's functions and account for depth variation of input fields using conduit flow models. The latter self-consistently capture covariation of input fields like particle velocity, particle volume fraction, and density. Body wave contributions become significant above 2-3 Hz, bringing the power spectral density (PSD) closer to observations. Conditions at the vent are not representative of flow throughout the tremor source region and using these values overestimates tremor amplitude. Particle size and its depth distribution alter the PSD and where dominant source contributions arise within the conduit. Solutions with decreasing mass eruption rate, representing a waning eruption, reveal a shift in the dominant tremor contribution from turbulence to particle impacts. Our work demonstrates the ability to integrate conduit flow modeling with volcano seismology studies of eruption tremor, providing an opportunity to link observations to eruptive processes. 
    more » « less
  3. Abstract Persistent volcanic activity is thought to be linked to degassing, but volatile transport at depth cannot be observed directly. Instead, we rely on indirect constraints, such as CO2‐H2O concentrations in melt inclusions trapped at different depth, but this data is rarely straight‐forward to interpret. In this study, we integrate a multiscale conduit‐flow model for non‐eruptive conditions and a volatile‐concentration model to compute synthetic profiles of volatile concentrations for different flow conditions and CO2fluxing. We find that actively segregating bubbles in the flow enhance the mixing of volatile‐poor and volatile‐rich magma in vertical conduit segments, even if the radius of these bubbles is several orders of magnitude smaller than the width of the conduit. This finding suggests that magma mixing is common in volcanic systems when magma viscosities are low enough to allow for bubble segregation as born out by our comparison with melt‐inclusion data: Our simulations show that even a small degree of mixing leads to volatile concentration profiles that are much more comparable to observations than either open‐ or closed‐system degassing trends for both Stromboli and Mount Erebus. Our results also show that two of the main processes affecting observed volatile concentrations, magma mixing and CO2fluxing, leave distinct observational signatures, suggesting that tracking them jointly could help better constrain changes in conduit flow. We argue that disaggregating melt‐inclusion data based on the eruptive behavior at the time could advance our understanding of how conduit flow changes with eruptive regimes. 
    more » « less
  4. Volcanic eruptions of rhyolitic magma often show shifts from powerful (Vulcanian to Plinian) explosive episodes to a more gentle effusion of viscous lava forming obsidian flows. Another prevailing characteris-tic of these eruptions is the presence of pyroclastic obsidians intermingled with the explosive tephra. This dense, juvenile product is similar to the tephra and obsidian flow in composition, but is generally less degassed than its flow counterpart. The formation mechanism(s) of pyroclastic obsidians and the information they can provide concerning the extent to which magma degassing modulates the eruptive style of rhyolitic eruptions are currently subject to active research. Porous tephra and pyroclastic and flow obsidians from the 1060CE Glass Mountain rhyolitic eruption at Medicine Lake Volcano (California) were analyzed for their porosity, φ, water content, H2O, and hydrogen isotopic composition, δD. H2O in porous pyroclasts is correlated negatively with δD and positively with φ, indicating that the samples were affected by post-eruptive rehydration. Numerical modeling suggests that this rehydration occurred at an average rate of 10−23.5±0.5m2s−1during the ∼960 years since the eruption, causing some pyroclasts to gain up to 1 wt%of meteoric water. Pyroclastic and flow obsidians were not affected by rehydration due to their very low porosity. Comparison between modeled δD-H2O relationships in degassing magma and values measured in the Glass Mountain samples supports the idea that rhyolitic magma degasses in closed-system until its porosity reaches a value of about 65±5%, beyond which degassing occurs in open-system until quench. During the explosive phase, rapidly ascending magma fragments soon after it becomes permeable, creating porous lapilli and ash that continue to degas in open-system within an expanding gas phase. As suggested by recent studies, some ash may aggregate and sinter on the conduit sides at different depths above the fragmentation level, partly equilibrating with the continuously fluxing heavier magmatic vapor, explaining the wide range of H2O contents and high variability in δD measured in the pyroclastic obsidians. Using only H2O and δD, it is impossible to rule out the possibility that pyroclastic obsidians may also form by permeable foam collapse, either syn-explosively near the conduit sides below the fragmentation level or during more effusive periods interspersed in the explosive phase. During the final effusive phase of the eruption, slowly ascending magma degasses in open-system until it reaches the surface, creating flows with low H2O and δD. This study shows that H2O measured in highly porous pyroclasts of a few hundred years or more cannot be used to infer syn-eruptive magma degassing pathways, unless careful assessment of post-eruptive rehydration is first carried out. If their mechanism of formation can be better understood, detailed analysis of the variations in texture and volatile content of pyroclastic obsidians throughout the explosive phase may help decipher the reasons why rhyolitic eruptions commonly shift from explosive to effusive phases. 
    more » « less
  5. Abstract Water and carbon dioxide are the most abundant volatile components in terrestrial magmas. As they exsolve into magmatic vapour, they promote magma buoyancy, accelerating ascent and modulating eruptive dynamics. It is commonly thought that an increase in pre-eruptive volatile content produces an increase in eruption intensity. Using a conduit model for basaltic eruptions, covering the upper 6 km of conduit, we show that for the same chamber conditions mass eruption rate is not affected by CO2content, whereas an increase in H2O up to 10 wt.% produces an increase in eruption rate of an order of magnitude. It is only when CO2is injected in the magma reservoir from an external source that the resulting pressurisation will generate a strong increase in eruption rate. Results also show that ascent velocity and fragmentation depth are strongly affected by pre-eruptive volatile contents demonstrating a link between volatile content and eruptive style. 
    more » « less