skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
New high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion ionization potential (EOM-IP) with a complete basis set extrapolation and core correlation corrections provide assignment for the fundamental vibrational frequencies of the A˜2B1 and B˜2A1 states of the formaldehyde cation; only three of these frequencies have experimental assignment available. Rotational constants corresponding to these vibrational excitations are also provided for the first time for all electronically excited states of both of these molecules. EOM-IP-CCSDT/CcC computations support tentative re-assignment of the ν1 and ν3 frequencies of the B˜2B2 state of the water cation to approximately 2409.3 cm−1 and 1785.7 cm−1, respectively, due to significant disagreement between experimental assignment and all levels of theory computed herein, as well as work by previous authors. The EOM-IP-CCSDT/CcC QFF achieves agreement to within 12 cm−1 for the fundamental vibrational frequencies of the electronic ground state of the water cation compared to experimental values and to the high-level theoretical benchmarks for variationally-accessible states. Less costly EOM-IP based approaches are also explored using approximate triples coupled cluster methods, as well as electronically excited state QFFs based on EOM-CC3 and the previous (T)+EOM approach. The novel data, including vibrationally corrected rotational constants for all states studied herein, provided by these computations should be useful in clarifying comet evolution or other remote sensing applications in addition to fundamental spectroscopy.  more » « less
Award ID(s):
1757220
PAR ID:
10417593
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecules
Volume:
28
Issue:
4
ISSN:
1420-3049
Page Range / eLocation ID:
1782
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rotational spectrum of 3-furonitrile has been collected from 85 to 500 GHz, spanning the most intense rotational transitions observable at room temperature. The large dipole moment imparted by the nitrile substituent confers substantial intensity to the rotational spectrum, enabling the observation of over 5600 new rotational transitions. Combined with previously published transitions, the available data set was least-squares fit to partial-octic, distorted-rotor A- and S-reduced Hamiltonian models with low statistical uncertainty (σfit < 0.031 MHz) for the ground vibrational state. Similar to its isomer 2-furonitrile, the two lowest-energy vibrationally excited states of 3-furonitrile (ν17, ν24), which correspond to the in-plane and out-of-plane nitrile bending vibrations, form an a- and b-axis Coriolis-coupled dyad. Rotationally resolved infrared transitions (30−600 cm−1) and over 4200 pure rotational transitions for both ν17 and ν24 were fit to a partial-octic, Coriolis-coupled, two-state Hamiltonian with low statistical uncertainty (σfit rot < 0.045 MHz, σfit IR < 6.1 MHz). The least-squares fitting of these vibrationally excited states provides their accurate and precise vibrational frequencies (ν17 = 168.193 164 8 (67) cm−1 and ν24 = 169.635 831 5 (77) cm−1) and seven Coriolis-coupling terms (Ga, GaJ, GaK, Fbc, FbcK, Gb, and Fac). The two fundamental states exhibit a notably small energy gap (1.442 667 (10) cm−1) and an inversion of the relative energies of ν17 and ν24 compared to those of the isomer 2-furonitrile. The rotational frequencies and spectroscopic constants of 3-furonitrile that we present herein provide a sufficient basis for conducting radioastronomical searches for this molecule across the majority of the frequency range available to current radiotelescopes. 
    more » « less
  2. A combined total of 25 vibrational states of 2-chloropyridine (C5H4NCl, la = 3.07 D, lb = 1.70 D), including states for both chlorine isotopologues, have been least-squares fit to sextic, A-reduced Hamiltonians with low error (<0.05 MHz). In total, over 22,500 transition frequencies were measured in the 135–375 GHz frequency region. The technique of fixing undeterminable distortion constants to the corresponding values of the ground vibrational state for fundamental states and to extrapolated values for overtone and combination states was employed. The experimentally determined rotational, centrifugal distortion, and vibration-rotation interaction constants are reasonably well-predicted by computational methods (B3LYP/6-311+G(2d,p)). For the chlorine isotopologues, the changes in rotational and quartic distortion constants upon vibrational excitation are quite similar, indicating that it is possible to estimate the constants of a lower-abundance isotopologue’s excited vibrational state using the change in constant observed in the higher-abundance isotopologue. The changes in rotational and quartic distortion constants upon vibrational excitation are also quite similar between analogous vibrational states of 2-chloropyridine and chloropyrazine, despite their differences in molecular composition. 
    more » « less
  3. The measurement of over 24,000 new rotational transitions of chloropyrazine (C4H3N2Cl, la = 1.55 D, lb = 0.14 D) in the 130–375 GHz frequency region enabled the assignments of the rotational spectra for the ground vibrational states of the [35Cl]- and [37Cl]-isotopologues and a combined total of 22 low-energy excited vibrational states. These vibrational states have been fit to sextic A-reduced Hamiltonians with low error (<0.05 MHz). These data allow for precise determination of the vibration-rotation interaction constants for the six lowest-energy fundamental vibrational modes (m24, m17, m23, m16, m22, and m15) of the [35Cl]-isotopologue and the four lowest-energy fundamental vibrational modes (m24, m17, m23, and m16) of the [37Cl]-isotopologue. In addition, many combination and overtone states were observed, bringing the total number of excited states to seventeen for the [35Cl]-isotopologue and five for the [37Cl]-isotopologue. The spectroscopic constants for the ground state, m24, and m17 for each isotopologue are very well determined (Nlines > 1400 for each least-squares fit). The vibration-rotation interaction constants experimentally determined for all observed fundamentals are generally in quite close agreement with their predicted (B3LYP/6-311+G(2d,p)) values. 
    more » « less
  4. A new electronic transition is reported for the linear C 6 + cation with an origin at 416.8 nm. This spectrum can be compared to the matrix isolation spectra at lower energies reported previously by Fulara et al. [J. Chem. Phys. 123, 044305 (2005)], which assigned linear and cyclic isomers, and to the gas phase spectrum reported previously by Campbell and Dunk [Rev. Sci. Instrum. 90, 103101 (2019)], which detected the same cyclic-isomer spectrum reported by Fulara. Comparisons to electronically excited states and vibrations predicted by various forms of theory allow assignment of the spectrum to a new electronic state of linear C 6 + . The spectrum consists of a strong origin band, two vibronic progression members at higher energy and four hot bands at lower energies. The hot bands provide the first gas phase information on ground state vibrational frequencies. The vibrational and electronic structure of C 6 + provide a severe challenge to computational chemistry. 
    more » « less
  5. Vibronically resolved laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down (CRD) spectra of the electronic transition of the calcium isopropoxide [CaOCH(CH 3 ) 2 ] radical have been obtained under jet-cooled conditions. An essentially constant energy separation of 68 cm −1 has been observed for the vibrational ground levels and all fundamental vibrational levels accessed in the LIF measurement. To simulate the experimental spectra and assign the recorded vibronic bands, Franck–Condon (FC) factors and vibrational branching ratios (VBRs) are predicted from vibrational modes and their frequencies calculated using the complete-active-space self-consistent field (CASSCF) and equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) methods. Combined with the calculated electronic transition energy, the computational results, especially those from the EOM-CCSD calculations, reproduced the experimental spectra with considerable accuracy. The experimental and computational results suggest that the FC matrix for the studied electronic transition is largely diagonal, but transitions from the vibrationless levels of the à state to the X̃-state levels of the CCC bending ( ν 14 and ν 15 ), CaO stretch ( ν 13 ), and CaOC asymmetric stretch ( ν 9 and ν 11 ) modes also have considerable intensities. Transitions to low-frequency in-plane [ ν 17 ( a ′)] and out-of-plane [ ν 30 ( a ′′)] CaOC bending modes were observed in the experimental LIF/DF spectra, the latter being FC-forbidden but induced by the pseudo-Jahn–Teller (pJT) effect. Both bending modes are coupled to the CaOC asymmetric stretch mode via the Duschinsky rotation, as demonstrated in the DF spectra obtained by pumping non-origin vibronic transitions. The pJT interaction also induces transitions to the ground-state vibrational level of the ν 10 ( a ′) mode, which has the CaOC bending character. Our combined experimental and computational results provide critical information for future direct laser cooling of the target molecule and other alkaline earth monoalkoxide radicals. 
    more » « less