The gas-phase rotational spectrum from 8 to 750 GHz and the high-resolution infrared (IR) spectrum of pyridazine (o-C4H4N2) have been analyzed for the ground and four lowest-energy vibrationally excited states. A combined global fit of the rotational and IR data has been obtained using a sextic, centrifugally distorted-rotor Hamiltonian with Coriolis coupling between appropriate states. Coriolis coupling has been addressed in the two lowest-energy coupled dyads (ν16, ν13 and ν24, ν9). Utilizing the Coriolis coupling between the vibrational states of each dyad and the analysis of the IR spectrum for ν16 and ν9, we have determined precise band origins for each of these fundamental states: ν16 (B1) = 361.213 292 7 (17) cm−1, ν13 (A2) = 361.284 082 4 (17) cm−1, ν24 (B2) = 618.969 096 (26) cm−1, and ν9 (A1) = 664.723 378 4 (27) cm−1. Notably, the energy separation in the ν16-ν13 Coriolis-coupled dyad is one of the smallest spectroscopically measured energy separations between vibrational states: 2122.222 (72) MHz or 0.070 789 7 (24) cm−1. Despite ν13 being IR inactive and ν24 having an impractically low-intensity IR intensity, the band origins of all four vibrational states were measured, showcasing the power of combining the data provided by millimeter-wave and high-resolution IR spectra. Additionally, the spectra of pyridazine-dx isotopologues generated for a previous semi-experimental equilibrium structure (reSE) determination allowed us to analyze the two lowest-energy vibrational states of pyridazine for all nine pyridazine-dx isotopologues. Coriolis-coupling terms have been measured for analogous vibrational states across seven isotopologues, both enabling their comparison and providing a new benchmark for computational chemistry.
more »
« less
This content will become publicly available on June 25, 2025
Millimeter-Wave and High-Resolution Infrared Spectroscopy of 3-Furonitrile
The rotational spectrum of 3-furonitrile has been collected from 85 to 500 GHz, spanning the most intense rotational transitions observable at room temperature. The large dipole moment imparted by the nitrile substituent confers substantial intensity to the rotational spectrum, enabling the observation of over 5600 new rotational transitions. Combined with previously published transitions, the available data set was least-squares fit to partial-octic, distorted-rotor A- and S-reduced Hamiltonian models with low statistical uncertainty (σfit < 0.031 MHz) for the ground vibrational state. Similar to its isomer 2-furonitrile, the two lowest-energy vibrationally excited states of 3-furonitrile (ν17, ν24), which correspond to the in-plane and out-of-plane nitrile bending vibrations, form an a- and b-axis Coriolis-coupled dyad. Rotationally resolved infrared transitions (30−600 cm−1) and over 4200 pure rotational transitions for both ν17 and ν24 were fit to a partial-octic, Coriolis-coupled, two-state Hamiltonian with low statistical uncertainty (σfit rot < 0.045 MHz, σfit IR < 6.1 MHz). The least-squares fitting of these vibrationally excited states provides their accurate and precise vibrational frequencies (ν17 = 168.193 164 8 (67) cm−1 and ν24 = 169.635 831 5 (77) cm−1) and seven Coriolis-coupling terms (Ga, GaJ, GaK, Fbc, FbcK, Gb, and Fac). The two fundamental states exhibit a notably small energy gap (1.442 667 (10) cm−1) and an inversion of the relative energies of ν17 and ν24 compared to those of the isomer 2-furonitrile. The rotational frequencies and spectroscopic constants of 3-furonitrile that we present herein provide a sufficient basis for conducting radioastronomical searches for this molecule across the majority of the frequency range available to current radiotelescopes.
more »
« less
- PAR ID:
- 10526094
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry A
- Volume:
- 128
- ISSN:
- 1089-5639
- Page Range / eLocation ID:
- xxxx
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The measurement of over 24,000 new rotational transitions of chloropyrazine (C4H3N2Cl, la = 1.55 D, lb = 0.14 D) in the 130–375 GHz frequency region enabled the assignments of the rotational spectra for the ground vibrational states of the [35Cl]- and [37Cl]-isotopologues and a combined total of 22 low-energy excited vibrational states. These vibrational states have been fit to sextic A-reduced Hamiltonians with low error (<0.05 MHz). These data allow for precise determination of the vibration-rotation interaction constants for the six lowest-energy fundamental vibrational modes (m24, m17, m23, m16, m22, and m15) of the [35Cl]-isotopologue and the four lowest-energy fundamental vibrational modes (m24, m17, m23, and m16) of the [37Cl]-isotopologue. In addition, many combination and overtone states were observed, bringing the total number of excited states to seventeen for the [35Cl]-isotopologue and five for the [37Cl]-isotopologue. The spectroscopic constants for the ground state, m24, and m17 for each isotopologue are very well determined (Nlines > 1400 for each least-squares fit). The vibration-rotation interaction constants experimentally determined for all observed fundamentals are generally in quite close agreement with their predicted (B3LYP/6-311+G(2d,p)) values.more » « less
-
A combined total of 25 vibrational states of 2-chloropyridine (C5H4NCl, la = 3.07 D, lb = 1.70 D), including states for both chlorine isotopologues, have been least-squares fit to sextic, A-reduced Hamiltonians with low error (<0.05 MHz). In total, over 22,500 transition frequencies were measured in the 135–375 GHz frequency region. The technique of fixing undeterminable distortion constants to the corresponding values of the ground vibrational state for fundamental states and to extrapolated values for overtone and combination states was employed. The experimentally determined rotational, centrifugal distortion, and vibration-rotation interaction constants are reasonably well-predicted by computational methods (B3LYP/6-311+G(2d,p)). For the chlorine isotopologues, the changes in rotational and quartic distortion constants upon vibrational excitation are quite similar, indicating that it is possible to estimate the constants of a lower-abundance isotopologue’s excited vibrational state using the change in constant observed in the higher-abundance isotopologue. The changes in rotational and quartic distortion constants upon vibrational excitation are also quite similar between analogous vibrational states of 2-chloropyridine and chloropyrazine, despite their differences in molecular composition.more » « less
-
New high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion ionization potential (EOM-IP) with a complete basis set extrapolation and core correlation corrections provide assignment for the fundamental vibrational frequencies of the A˜2B1 and B˜2A1 states of the formaldehyde cation; only three of these frequencies have experimental assignment available. Rotational constants corresponding to these vibrational excitations are also provided for the first time for all electronically excited states of both of these molecules. EOM-IP-CCSDT/CcC computations support tentative re-assignment of the ν1 and ν3 frequencies of the B˜2B2 state of the water cation to approximately 2409.3 cm−1 and 1785.7 cm−1, respectively, due to significant disagreement between experimental assignment and all levels of theory computed herein, as well as work by previous authors. The EOM-IP-CCSDT/CcC QFF achieves agreement to within 12 cm−1 for the fundamental vibrational frequencies of the electronic ground state of the water cation compared to experimental values and to the high-level theoretical benchmarks for variationally-accessible states. Less costly EOM-IP based approaches are also explored using approximate triples coupled cluster methods, as well as electronically excited state QFFs based on EOM-CC3 and the previous (T)+EOM approach. The novel data, including vibrationally corrected rotational constants for all states studied herein, provided by these computations should be useful in clarifying comet evolution or other remote sensing applications in addition to fundamental spectroscopy.more » « less
-
First, high-resolution sub-Doppler infrared spectroscopic results for cyclopentyl radical (C 5 H 9 ) are reported on the α-CH stretch fundamental with suppression of spectral congestion achieved by adiabatic cooling to T rot ≈ 19(4) K in a slit jet expansion. Surprisingly, cyclopentyl radical exhibits a rotationally assignable infrared spectrum, despite 3N − 6 = 36 vibrational modes and an upper vibrational state density (ρ ≈ 40–90 #/cm −1 ) in the critical regime (ρ ≈ 100 #/cm −1 ) necessary for onset of intramolecular vibrational relaxation (IVR) dynamics. Such high-resolution data for cyclopentyl radical permit detailed fits to a rigid-rotor asymmetric top Hamiltonian, initial structural information for ground and vibrationally excited states, and opportunities for detailed comparison with theoretical predictions. Specifically, high level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T))/ANO0, 1 level are used to calculate an out-of-plane bending potential, which reveals a C 2 symmetry double minimum 1D energy surface over a C 2v transition state. The inversion barrier [V barrier ≈ 3.7(1) kcal/mol] is much larger than the effective moment of inertia for out-of-plane bending, resulting in localization of the cyclopentyl wavefunction near its C 2 symmetry equilibrium geometry and tunneling splittings for the ground state too small (<1 MHz) to be resolved under sub-Doppler slit jet conditions. The persistence of fully resolved high-resolution infrared spectroscopy for such large cyclic polyatomic radicals at high vibrational state densities suggests a “deceleration” of IVR for a cycloalkane ring topology, much as low frequency torsion/methyl rotation degrees of freedom have demonstrated a corresponding “acceleration” of IVR processes in linear hydrocarbons.more » « less