Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, the adjacent fold–thrust belt or the broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to non-depositional or erosional conditions in which the interruption of subsidence precludes the net accumulation of sediment. This study explores the genesis of long-duration unconformities (>1–20 myr) and condensed stratigraphic sections by considering modern and ancient examples from the Andes of western South America. These case studies highlight the potential geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings, including: (1) shortening-induced uplift in the frontal thrust belt and proximal foreland; (2) the growth and advance of a broad, low-relief flexural forebulge; (3) the uplift of intraforeland basement blocks; (4) tectonic quiescence with regional isostatic rebound; (5) the end of thrust loading and flexural subsidence during oblique convergence; (6) diminished accommodation or sediment supply due to changes in sea-level, climate, erosion or transport; (7) basinwide uplift during flat-slab subduction; and (8) dynamic uplift associated with slab window formation, slab break-off, elevated intraplate (in-plane) stress, or related mantle process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context, stratigraphic position, palaeoenvironmental conditions, and duration of unconformities and condensed sections. Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts
more »
« less
Fold-and-thrust belts and associated basins: a perspective on their structure, sedimentation, and dynamics
Fold-and-thrust belts are structural features that accommodate upper-crustal shortening by the growth of a series of thrust faults and folds. Recent studies show that a better understanding of the structure and sedimentation styles of fold-and-thrust belts and their associated basins can provide crucial insights for improved interpretations of the evolution of ancient and modern convergent margins and the mechanisms of intracontinental deformation. To achieve a more comprehensive understanding of the development of contractional orogenic belts, this thematic collection gathers contributions that explore different types of fold-and-thrust belts at various scales around the world, via different approaches including theory development, structural and stratigraphic observations from the field, geophysical analyses, and numerical modelling. Case studies include the northern margin of the Tibetan plateau and Pamir region, the Timanian and Caledonian orogenies in northern Norway, orogenic belts in western Laurentia, and the Andes of western South America. These studies reemphasize the importance of integrating broad datasets when documenting the distribution, geometry, and kinematics of structures in fold-and-thrust belts and their associated basins, including field-based structural observations, provenance, low-temperature thermochronologic, geomorphologic, and subsurface data, and analog and numerical models. This thematic collection aims to encourage further efforts for comparative studies of the fold-and-thrust belts around the world and proposes interdisciplinary research to address outstanding questions in the study of contractional orogens. Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/topic/collections/fold-and-thrust-belts-and-associated-basins
more »
« less
- Award ID(s):
- 1914501
- PAR ID:
- 10417642
- Date Published:
- Journal Name:
- Journal of the Geological Society
- Volume:
- 180
- Issue:
- 2
- ISSN:
- 0016-7649
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The south-central Chile and Argentina margin experienced a regional phase of extensional tectonics during the Oligocene–early Miocene, forming several basins across the forearc, Andean Cordillera, and retroarc regions. These basins accumulated thick successions of volcanic and sedimentary rocks. Subsequently, Neogene contractional tectonics led to the development of the current Andean Cordillera and the deposition of synorogenic clastic deposits in foreland basins. Traditionally, the Cura Mallín Formation, comprising a lower volcanic unit (CMV) and an upper sedimentary unit (CMS), has been interpreted to have formed during the Oligocene–early Miocene extensional phase. However, some studies propose deposition of the CMS in a foreland basin during the early–late Miocene. To unravel the transition from extensional to contractional tectonics in the Andes of south-central Chile and Argentina, we conducted new geochronological analyses (U-Pb, LA-ICP-MS) and integrated these results with structural, stratigraphic, and sedimentological observations in key sections within the CMS and the overlying Trapa-Trapa Formation in the Principal Cordillera along the Chile-Argentina border (37°–38°S). Our findings indicate that only the lower part of the CMS was deposited in an extensional setting, as evidenced by the presence of an inverted extensional wedge dated at ∼20 Ma. The middle-upper CMS (∼19 to 9 Ma) and contemporaneous units to the east exhibit evidence of syncontractional deformation, suggesting deposition in a foreland basin generated by shortening of the western Principal Cordillera. Around 9 Ma, uplift of the Agrio and Chos Malal fold and thrust belts, east of the Principal Cordillera, led to segmentation of the foreland basin. The Trapa Trapa Formation was deposited in a hinterland basin, with sediment sourced from the east. After ∼6.5 Ma, major contractional deformation shifted westward, resulting in intense folding of the CMS and Trapa Trapa Formation and subsequent thrusting of the western Principal Cordillera over the Central Depression. Our study suggests that deformation progressed toward the eastern foreland during the early to late Miocene and then shifted toward the western forearc during the late Miocene to Pleistocene.more » « less
-
null (Ed.)Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a −1 , which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent. Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MN Thematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-beltsmore » « less
-
Abstract Mesozoic crustal shortening in the North American Cordillera’s hinterland was related to the construction of the Nevadaplano orogenic plateau. Petrologic and geochemical proxies in Cordilleran core complexes suggest substantial Late Cretaceous crustal thickening during plateau construction. In eastern Nevada, geobarometry from the Snake Range and Ruby Mountains-East Humboldt Range-Wood Hills-Pequop Mountains (REWP) core complexes suggests that the ~10–12 km thick Neoproterozoic-Triassic passive-margin sequence was buried to great depths (>30 km) during Mesozoic shortening and was later exhumed to the surface via high-magnitude Cenozoic extension. Deep regional burial is commonly reconciled with structural models involving cryptic thrust sheets, such as the hypothesized Windermere thrust in the REWP. We test the viability of deep thrust burial by examining the least-deformed part of the REWP in the Pequop Mountains. Observations include a compilation of new and published peak temperature estimates (n=60) spanning the Neoproterozoic-Triassic strata, documentation of critical field relationships that constrain deformation style and timing, and new 40Ar/39Ar ages. This evidence refutes models of deep regional thrust burial, including (1) recognition that most contractional structures in the Pequop Mountains formed in the Jurassic, not Cretaceous, and (2) peak temperature constraints and field relationships are inconsistent with deep burial. Jurassic deformation recorded here correlates with coeval structures spanning western Nevada to central Utah, which highlights that Middle-Late Jurassic shortening was significant in the Cordilleran hinterland. These observations challenge commonly held views for the Mesozoic-early Cenozoic evolution of the REWP and Cordilleran hinterland, including the timing of contractional strain, temporal evolution of plateau growth, and initial conditions for high-magnitude Cenozoic extension. The long-standing differences between peak-pressure estimates and field relationships in Nevadan core complexes may reflect tectonic overpressure.more » « less
-
Late Cretaceous to Paleogene contractional deformation in the southern U.S. Cordillera is commonly attributed to the Laramide Orogeny, in part because of the prevalence of moderate- to high-angle, basement-involved reverse faults. However, it is unclear if the tectonic models developed for the archetypal Laramide foreland belt in the U.S. Rocky Mountain region are applicable to the southern U.S. Cordillera. New geologic mapping of the northern Chiricahua Mountains in southeast Arizona, USA, indicates the presence of an originally sub-horizontal thrust fault, the Fort Bowie fault, and a thin-skinned ramp-flat thrust system that is offset by a younger thrust fault, the Apache Pass fault, that carries basement rocks. Cross-cutting relationships and new geochronologic data indicate deformation on both faults occurred between 60 Ma and 35 Ma. A biotite 40Ar/39Ar plateau age of 48 Ma from the hanging wall of the basement-involved Apache Pass fault is interpreted to record erosion related to reverse fault movement and rock uplift. The presence of thrust faults in southeast Arizona raises the possibility of a latest Cretaceous−Eocene retroarc orogenic wedge that linked the Sevier and Mexican thrust belts to the north and south, respectively. Basement-involved deformation does not rule out the presence of a retroarc wedge, and many Cordilleran orogenic systems include basement-involved thrusting.more » « less
An official website of the United States government

