Though it has been nearly ten years since the Framework (NRC, 2013) and NGSS have been released, there remains a persistent need for effective professional learning (PL) that supports teachers’ knowledge of the NGSS and their science and engineering content knowledge. Grades 3-5 rural teachers across four states participated in a week-long PL with ongoing supports. We asked to what extent the intervention enhanced teachers’ knowledge of NGSS-aligned teaching strategies and science and engineering content knowledge. We developed a vignette that embedded practical planning and teaching experiences that align with the NGSS vision. More specifically, the vignette focused on planning and classroom instruction with both hypothetical and realistic situations that were brief and incomplete and had open questions that targeted their own perspective. A purposefully selected subgroup of teachers (n=33) representing a range of grades and the four states were asked to complete the vignette in Spring 2024. We are following the six-step thematic analysis process (Braun & Clark, 2012). Findings indicate teachers needed more support with the following themes: what the three dimensions are, how the three dimensions should be integrated, how phenomena should be implemented, and how to align the lesson with the standard.
more »
« less
Investigating the mangle of teaching oxidation–reduction with the VisChem approach: problematising symbolic traditions that undermine chemistry concept development
Specific to the topic of oxidation–reduction (redox), teachers are obligated by the discipline to prioritise symbolic traditions such as writing equations, documenting oxidation states, and describing changes ( e.g. , what undergoes oxidation/reduction). Although the chemistry education research community endorses connecting the vertices of Johnstone's triangle, how symbolic traditions undermine chemistry concept development, especially during lesson planning and teaching, is underexplored. To clarify this gap, we use the Mangle of Practice framework to unpack the clash between symbolic vs. particulate-focused instruction. We investigate teachers’ ( n = 3) co-planning and micro-teaching of a redox learning design at the VisChem Institute-2 using a narrative approach and video research methods. Our results show that the traditions of redox instruction are problematically entrenched in chemistry symbols. Mnemonics, the single replacement reaction scheme, and the written net ionic equation all constrain instruction focused on chemical mechanism and causality in various ways. We assert that the nature of redox knowledge in terms of what is worth teaching and learning must first be re-evaluated for reform-based efforts to succeed. Implications and suggestions for chemistry teaching and research at both secondary and tertiary levels are discussed.
more »
« less
- Award ID(s):
- 1908121
- PAR ID:
- 10417709
- Date Published:
- Journal Name:
- Chemistry Education Research and Practice
- ISSN:
- 1109-4028
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemistry Education Research has transformed how we understand and improve student learning in general and organic chemistry, but inorganic chemistry remains understudied. This gap persists even though inorganic instruction involves complex representational demands, spatial reasoning, abstract formalisms, and instructional traditions that shape how students experience the subject. Using molecular symmetry as a case study, this contribution argues that research on teaching and learning must attend more closely to inorganic chemistry. We outline how challenges in student cognition, instructional design, representational tools, and instructor assumptions interact in ways that affect learning but remain poorly understood. Drawing on frameworks from cognitive psychology and learning sciences, we highlight the need for systematic, discipline-specific investigations into how students learn and how instructors teach key inorganic concepts. Finally, we offer a research agenda that extends beyond symmetry to areas like bonding theory, coordination chemistry, and solid-state structures. By investing in a robust teaching and learning research program for inorganic chemistry, we can develop instructional strategies grounded in empirical evidence, improving student learning and supporting the evolution of the discipline.more » « less
-
Secondary chemistry teacher learning: precursors for and mechanisms of pedagogical conceptual changeDespite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants ( N = 35) who completed our professional development program known as the VisChem Institute (VCI). Our results show that Johnstone's triangle as well as evidence, explanations, and models can be conducive for stimulating pedagogical discontentment among VCI teachers who exhibit higher self-efficacy. In addition, how VCI teachers assimilate and/or accommodate reform-based chemistry teaching ideas problematizes conventional assumptions, broadens application of novel theories, and is germane to introductory chemistry learning environments across the world. Implications and recommendations for chemistry instruction and research at both secondary and tertiary levels are discussed.more » « less
-
Abstract Knowing how science teachers develop their professional knowledge has been a challenge. One potential way to determine the professional knowledge of teachers is through videos. In the study described here, the authors recruited 60 elementary and secondary science teachers, showed them one of two 10‐min videos, and recorded and analyzed their comments when watching the videos. The coding focused on their noticing of student learning, teacher's teaching, types of teaching practices, and the use of interpretative frames. The noticing data were collected and analyzed to determine the differences between groups of teachers. The findings from the analysis indicated that most science teachers noticed the instruction of teachers rather than the learning of students, and these noticing events were often focused on general instructional practices as opposed to the science practices emphasized in theNext Generation Science Standards(National Research Council, 2013). The only difference between the teachers was in the area of evaluating the videos. Secondary science teachers and experienced elementary teachers were more likely to evaluate the videos than were novice elementary teachers. This may be a result of the knowledge base of the teachers. These results suggest a need for explicit reform‐based instruction and a revision of this research process.more » « less
-
Cohen, J; Solano, G (Ed.)To address the diversity of student differences, educators need to actively recognize and counter patterns of bias in their teaching practices as well as in their classroom environments. The topic is highly relevant to the education field including faculty of educator preparation programs, classroom teachers and administrators. The simulated teaching environment includes research-based outcomes that show improvement in teaching efficacy and culturally diverse teaching practices. The simulation is focused on allowing educators to “practice teaching” in a variety of content areas any time benefitting from the simEquity experience by learning how to change instructional practices based on bias awareness and guided improvement through targeted feedback. Context appropriate recommendations for improvements in equity-based teaching practices will provide participants with the tools needed for reducing implicit bias in instruction. The cycle includes planning instruction, teaching in a simulation, receiving feedback, improving instruction for subsequent simulations and reflecting on the practices that were used with the artificially created students. One strength of using simulations is the objective feedback provided to participants that allow improvements based on actual choices made with each of the simStudents. All participants will have access for any of their colleagues and students to the “Teaching without bias” module for one year.more » « less
An official website of the United States government

