skip to main content


Title: Secondary chemistry teacher learning: precursors for and mechanisms of pedagogical conceptual change
Despite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants ( N = 35) who completed our professional development program known as the VisChem Institute (VCI). Our results show that Johnstone's triangle as well as evidence, explanations, and models can be conducive for stimulating pedagogical discontentment among VCI teachers who exhibit higher self-efficacy. In addition, how VCI teachers assimilate and/or accommodate reform-based chemistry teaching ideas problematizes conventional assumptions, broadens application of novel theories, and is germane to introductory chemistry learning environments across the world. Implications and recommendations for chemistry instruction and research at both secondary and tertiary levels are discussed.  more » « less
Award ID(s):
1908121
NSF-PAR ID:
10417720
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
24
Issue:
1
ISSN:
1109-4028
Page Range / eLocation ID:
245 to 262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Researchers have typically identified and characterized teachers’ knowledge bases ( e.g. , pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense). PedChemSense theoretically expands upon the RCM that generates actionable guidelines to support chemsistry teachers’ lesson planning. We incorporate the constructs of sensemaking, Johnstone's triangle, and the models for perspective to provide a lesson-planning mechanism that is specific, accessible, and practical, respectively. Lesson examples from our own professional development contexts, the VisChem Institute, demonstrate the efficacy of PedChemSense. By leveraging teachers’ sensemaking of the limitations and utility of models, PedChemSense facilitates teachers’ designing for opportunities to advance their students’ chemistry conceptual understanding. Implications and recommendations for chemistry instruction and research at secondary and undergraduate levels are discussed. 
    more » « less
  2. A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students. 
    more » « less
  3. Specific to the topic of oxidation–reduction (redox), teachers are obligated by the discipline to prioritise symbolic traditions such as writing equations, documenting oxidation states, and describing changes ( e.g. , what undergoes oxidation/reduction). Although the chemistry education research community endorses connecting the vertices of Johnstone's triangle, how symbolic traditions undermine chemistry concept development, especially during lesson planning and teaching, is underexplored. To clarify this gap, we use the Mangle of Practice framework to unpack the clash between symbolic vs. particulate-focused instruction. We investigate teachers’ ( n = 3) co-planning and micro-teaching of a redox learning design at the VisChem Institute-2 using a narrative approach and video research methods. Our results show that the traditions of redox instruction are problematically entrenched in chemistry symbols. Mnemonics, the single replacement reaction scheme, and the written net ionic equation all constrain instruction focused on chemical mechanism and causality in various ways. We assert that the nature of redox knowledge in terms of what is worth teaching and learning must first be re-evaluated for reform-based efforts to succeed. Implications and suggestions for chemistry teaching and research at both secondary and tertiary levels are discussed. 
    more » « less
  4. Abstract

    Teachers play a critical role in successfully implementing science education reforms in the United States to provide high‐quality science learning opportunities to all students. However, the differentiated ways in which teachers make decisions about their science teaching are not well understood. This study takes a person‐centered approach by applying latent profile analysis to examine how cognitive (pedagogical content knowledge) and motivational (instructional goal orientations, self‐efficacy beliefs, and reform values) characteristics combine to form science teacher profiles in middle school. Predictors of profile membership (bachelor's degree, school %FRL) and both teacher (science instructional practices) and student (science achievement, engagement, and self‐efficacy) outcomes related to the teacher profiles were also examined. Five science teacher profiles were identified (severely discouraged but reform oriented, discouraged but reform oriented, conventional, confident and mastery oriented, and confident with multiple goal approaches) that represented unique configurations of cognitive and motivation characteristics. Additionally, findings showed that the teacher profiles were significantly related to three dimensions of science instructional practice including communication, discourse, and reasoning. Finally, the teacher profiles were significantly related to student science achievement and motivational outcomes. Implications for differentiated approaches to teacher professional learning and supports for science instruction are discussed.

     
    more » « less
  5. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less