skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis, Characterization and Photocleavage of Bis‐decyl Pteroic Acid: A Folate Derivative with Affinity to Biomembranes †
Award ID(s):
1956098 2154133
PAR ID:
10417765
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
99
Issue:
2
ISSN:
0031-8655
Page Range / eLocation ID:
593 to 604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established aTfap2b‐CreERT2knock‐in transgenic mouse line using the CRISPR‐Cas9‐mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show theTfap2blineage within the key neural crest‐derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates theTfap2b‐CreERT2transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting ofTfap2b‐expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis. 
    more » « less
  2. Abstract The sensitized photooxidation ofortho‐prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2‐(prop‐1‐en‐2‐yl)‐2,3‐dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT) of singlet oxygen with prenyl phenol by ~10‐fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen to prenyl site due to hydrogen bonding with the phenol OH group, which causes a divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation. 
    more » « less
  3. Abstract The stable isotope ratio of dissolved inorganic carbon (δ13C‐DIC) is a valuable tracer for investigating carbon cycling in aquatic environments. However, its potential remains underutilized due to limited data availability. Fewer than 15% of cruise samples are analyzed forδ13C‐DIC, as isotope analysis using isotope ratio mass spectrometry is labor‐intensive and restricted to onshore laboratories. We present over 3500δ13C‐DIC measurements from the 2023 Global Ocean Ship‐based Hydrographic Investigations Program A16N cruise in the North Atlantic. Notably, three‐quarters of these measurements were conducted onboard using a CO2extraction device coupled with cavity ring‐down spectroscopy, a more efficient and cost‐effective method. This extensive dataset providesδ13C‐DIC values with spatial resolution comparable to other ocean carbonate chemistry and biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2uptake and storage, and may facilitate the development of algorithms to estimateδ13C‐DIC in under sampled regions. 
    more » « less