skip to main content


Title: Synthesis, Characterization and Photocleavage of Bis‐decyl Pteroic Acid: A Folate Derivative with Affinity to Biomembranes †
Award ID(s):
1956098 2154133
NSF-PAR ID:
10417765
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
99
Issue:
2
ISSN:
0031-8655
Page Range / eLocation ID:
593 to 604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Patterns ofδ18O andδ2H in Earth's precipitation provide essential scientific data for use in hydrological, climatological, ecological and forensic research. Insufficient global spatial data coverage promulgated the use of gridded datasets employing geostatistical techniques (isoscapes) for spatiotemporally coherent isotope predictions. Cluster‐based isoscape regionalization combines the advantages of local or regional prediction calibrations into a global framework. Here we present a revision of a Regionalized Cluster‐Based Water Isotope Prediction model (RCWIP2) incorporating new isotope data having extensive spatial coverage and a wider array of predictor variables combined with high‐resolution gridded climatic data. We introduced coupling ofδ18O andδ2H (e.g.,d‐excess constrained) in the model predictions to prevent runaway isoscapes when each isotope is modelled separately and cross‐checked observed versus modelledd‐excess values. We improved model error quantification by adopting full uncertainty propagation in all calculations. RCWIP2 improved the RMSE over previous isoscape models by ca. 0.3 ‰ forδ18O and 2.5 ‰ forδ2H with an uncertainty <1.0 ‰ forδ18O and < 8 ‰ forδ2H for most regions of the world. The determination of the relative importance of each predictor variable in each ecoclimatic zone is a new approach to identify previously unrecognized climatic drivers on mean annual precipitationδ18O andδ2H. The improved RCWIP2 isoscape grids and maps (season, monthly, annual, regional) are available for download athttps://isotopehydrologynetwork.iaea.org.

     
    more » « less
  2. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  3. Abstract

    Flowering time and water‐use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time,WUE, andWUEplasticity to drought inArabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) IsWUEplasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions ofA. thalianagrown in well‐watered and season‐ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment.WUEand flowering time were consistently positively genetically correlated.WUEwas correlated withWUEplasticity, but the direction changed between treatments. Selection generally favored early flowering and lowWUE, with drought favoring earlier flowering significantly more than well‐watered conditions. Selection for lowerWUEwas marginally stronger under drought. There were no net fitness costs ofWUEplasticity.WUEplasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation betweenWUEand flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions ofA. thaliana.WUEplasticity may be favored over completely fixed development in environments with periodic drought.

     
    more » « less