Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits.Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms.We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way.The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers.As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment.
more »
« less
Causes, Responses, and Implications of Anthropogenic versus Natural Flow Intermittence in River Networks
Abstract Rivers that do not flow year-round are the predominant type of running waters on Earth. Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the hydrological causes and ecological effects of human-induced, anthropogenic flow intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and biological responses in rivers because of distinct underlying causes of drying and evolutionary adaptations of their biota. We first review the causes of AFI and show how different anthropogenic drivers alter the timing, frequency and duration of drying, compared with NFI. Second, we evaluate the possible differences in biodiversity responses, ecological functions, and ecosystem services between NFI and AFI. Last, we outline knowledge gaps and management needs related to AFI. Because of the distinct hydrologic characteristics and ecological impacts of AFI, ignoring the distinction between NFI and AFI could undermine management of intermittent rivers and ephemeral streams and exacerbate risks to the ecosystems and societies downstream.
more »
« less
- PAR ID:
- 10417782
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- BioScience
- Volume:
- 73
- Issue:
- 1
- ISSN:
- 0006-3568
- Page Range / eLocation ID:
- 9 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Droughts are often long-lasting phenomena, without a distinct start or end and with impacts cascading across sectors and systems, creating long-term legacies. Nevertheless, our current perceptions and management of droughts and their impacts are often event-based, which can limit the effective assessment of drought risks and reduction of drought impacts. Here, we advocate for changing this perspective and viewing drought as a hydrological–ecological–social continuum. We take a systems theory perspective and focus on how “memory” causes feedback and interactions between parts of the interconnected systems at different timescales. We first discuss the characteristics of the drought continuum with a focus on the hydrological, ecological, and social systems separately, and then we study the system of systems. Our analysis is based on a review of the literature and a study of five cases: Chile, the Colorado River basin in the USA, northeast Brazil, Kenya, and the Rhine River basin in northwest Europe. We find that the memories of past dry and wet periods, carried by both bio-physical (e.g. groundwater, vegetation) and social systems (e.g. people, governance), influence how future drought risk manifests. We identify four archetypes of drought dynamics: impact and recovery, slow resilience building, gradual collapse, and high resilience–big shock. The interactions between the hydrological, ecological, and social systems result in systems shifting between these types, which plays out differently in the five case studies. We call for more research on drought preconditions and recovery in different systems, on dynamics cascading between systems and triggering system changes, and on dynamic vulnerability and maladaptation. Additionally, we advocate for more continuous monitoring of drought hazards and impacts, modelling tools that better incorporate memories and adaptation responses, and management strategies that increase societal and institutional memory. This will help us to better deal with the complex hydrological–ecological–social drought continuum and identify effective pathways to adaptation and mitigation.more » « less
-
Stream drying is happening globally, with important ecological and social consequences. Most examples of stream drying come from systems influenced by dam operations or those with highly exploited aquifers. Stream drying is also thought to be driven by anthropogenic climate change; however, examples are surprisingly limited. We explored flow trends from the five recognized Mediterranean‐climate regions of the world with a focus on unregulated (non‐dammed or non‐diverted) streams with long‐term gauge records. We found consistent evidence of decreasing discharge trends, increasing zero‐flow days, and steeper downward discharge trends in smaller basins. Beyond directional trends, many systems have recently undergone shifts in flow state, including some streams that have transitioned from perennial to intermittent flow states. Our analyses provide evidence of stream drying consistent with climate change but also highlight knowledge gaps and challenges in empirically and statistically documenting flow regime shifts. We discuss the myriad consequences of losing flow and propose strategies for improving detection of and adapting to flow change.more » « less
-
Abstract Over half of global rivers and streams lack perennial flow, and understanding the distribution and drivers of their flow regimes is critical for understanding their hydrologic, biogeochemical, and ecological functions. We analyzed nonperennial flow regimes using 540 U.S. Geological Survey watersheds across the contiguous United States from 1979 to 2018. Multivariate analyses revealed regional differences in no‐flow fraction, date of first no flow, and duration of the dry‐down period, with further divergence between natural and human‐altered watersheds. Aridity was a primary driver of no‐flow metrics at the continental scale, while unique combinations of climatic, physiographic and anthropogenic drivers emerged at regional scales. Dry‐down duration showed stronger associations with nonclimate drivers compared to no‐flow fraction and timing. Although the sparse distribution of nonperennial gages limits our understanding of such streams, the watersheds examined here suggest the important role of aridity and land cover change in modulating future stream drying.more » « less
-
Abstract Dissolved organic carbon (DOC) concentrations vary among headwaters, with variation typically decreasing with watershed area. We hypothesized that streamflow intermittence could be an important source of variation in DOC concentrations across a small watershed, through (a) temporal legacies of drying on organic matter accumulation and biotic communities and (b) spatial patterns of connectivity with DOC sources. To test these hypotheses, we conducted three synoptic water chemistry sampling campaigns across a 25.5‐km2watershed in south‐eastern Idaho during early spring, late summer, and late fall. Using changepoint analysis, we found that DOC variability collapsed at a consistent location (watershed areas ~1.3 to ~1.8 km2) across seasons, which coincided with the watershed area where variability in streamflow intermittence collapsed (~1.5 km2). To test hypothesized mechanisms through which intermittence may affect DOC, we developed temporal, spatial, and spatio‐temporal metrics of streamflow intermittence and related these to DOC concentrations. Streamflow intermittence was a strong predictor of DOC across seasons, but different metrics predicted DOC depending on season. Seasonal changes in the effects of intermittence on DOC reflected seasonal changes from instream to flowpath controls. A metric that captured spatial connectivity to sources significantly predicted DOC during high flows, when DOC is typically controlled by transport. In contrast, a reach‐scale temporal metric of intermittence predicted DOC during the late growing season, when DOC is typically controlled by instream processes and when legacy effects of drying (e.g., diminished biological communities) would likely affect DOC. The effects of intermittence on DOC extend beyond temporal legacies at a point. Our results suggest that legacy effects of intermittence do not propagate downstream in this system. Instead, snapshots of spatial patterns of intermittence upstream of a reach are critical for understanding spatial patterns of DOC through connectivity to DOC sources, and these processes drive patterns of DOC even in perennial reaches.more » « less