skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: River flow decline across the entire Arkansas River Basin in the 21st century
The Arkansas River and its tributaries provide critical water resources for agricultural irrigation, hydropower generation, and public water supply in the Arkansas River Basin (ARB). However, climate change and other environmental factors have imposed significant impacts on regional hydrological processes, resulting in widespread ecological and economic consequences. In this study, we projected future river flow patterns in the 21st century across the entire ARB under two climate and socio-economic change scenarios (i.e., SSP2-RCP45 and SSP5-RCP85) using the process-based Dynamic Land Ecosystem Model (DLEM). We designed “baseline simulations” (all driving factors were kept constant at the level circa 2000) and “environmental change simulations” (at least one driving factor changed over time during 2001–2099) to simulate the inter-annual variations of river flow and quantify the contributions of four driving factors (i.e., climate change, CO2 concentration, atmospheric nitrogen deposition, and land use change). Results showed that the Arkansas River flow in 2080–2099 would decrease by 12.1% in the SSP2-RCP45 and 27.9% in the SSP5-RCP85 compared to that during 2000–2019. River flow decline would occur from the beginning to the middle of this century in the SSP2-RCP45 and happen throughout the entire century in the SSP5-RCP85. All major rivers in the ARB would experience river flow decline with the largest percentage reduction in the western and southwestern ARB. Warming and drying climates would account for 77%–95% of the reduction. The rising CO2 concentration would exacerbate the decline through increasing foliage area and ecosystem evapotranspiration. This study provides insight into the spatial patterns of future changes in water availability in the ARB and the underlying mechanisms controlling these changes. This information is critical for designing watershed-specific management strategies to maintain regional water resource sustainability and mitigate the adverse impacts of climate changes on water availability.  more » « less
Award ID(s):
1946093
PAR ID:
10495359
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ELSEVIER
Date Published:
Journal Name:
Journal of Hydrology
Volume:
618
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
129253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil erosion and sedimentation problems remain a major water quality concern for making watershed management policies in the Mississippi River Basin (MRB). It is unclear whether the observed decreasing trend of stream suspended sediment loading to the mouth of the MRB over the last eight decades truly reflects a decline in upland soil erosion in this large basin. Here, we improved a distributed regional land surface model, the Dynamic Land Ecosystem Model, to evaluate how climate and land use changes have impacted soil erosion and sediment yield over the entire MRB during the past century. Model results indicate that total sediment yield significantly increased during 1980–2018, despite no significant increase in annual precipitation and runoff. The increased soil erosion and sediment yield are mainly driven by intensified extreme precipitation (EP). Spatially, we found notable intensified EP events in the cropland‐dominated Midwest region, resulting in a substantial increase in soil erosion and sediment yield. Land use change played a critical role in determining sediment yield from the 1910s to the 1930s, thereafter, climate variability increasingly became the dominant driver of soil erosion, which peaked in the 2010s. This study highlights the increasing influences of extreme climate in affecting soil erosion and sedimentation, thus, water quality. Therefore, existing forest and cropland Best Management Practices should be revisited to confront the impacts of climate change on water quality in the MRB. 
    more » « less
  2. Kaplan, J (Ed.)
    The Mississippi River Basin (MRB), the fourth-largest river basin in the world, is an important corridor for hy- droelectric power generation, agricultural and industrial production, riverine transportation, and ecosystem goods and services. Historically, flooding of the Mississippi River has resulted in significant economic losses. In a future with an intensified global hydrological cycle, the altered discharge of the river may jeopardize commu- nities and infrastructure situated in the floodplain. This study utilizes output from the Community Earth System Model version 2 (CESM2) large ensemble simulations spanning 1930 to 2100 to quantify changes in future MRB discharge under a high greenhouse gas emissions scenario (SSP3–7.0). The simulations show that increasing precipitation trends exceed and dominate increased evapotranspiration (ET), driving an overall increase in total discharge in the Ohio and Lower Mississippi River basins. On a seasonal scale, reduced spring snowmelt is projected in the Ohio and Missouri River basins, leading to reduced spring runoff in those regions. However, decreased snowmelt and spring runoff is overshadowed by a larger increase in projected precipitation minus ET over the entire basin and leads to an increase in mean river discharge. This increase in discharge is linked to a relatively small increase in the magnitude of extreme floods (2 % and 3 % for 100-year and 1000-year floods, respectively) by the late 21st century relative to the late 20th century. Our analyses imply that under SSP3–7.0 forcing, the Mississippi River and Tributaries (MR&T) project design flood would not be exceeded at the 100-year return period. Our results harbor implications for water resources management including increased vulnerability of the Mississippi River given projected changes in climate. 
    more » « less
  3. Abstract The Mississippi River is a vital economic corridor used for generating hydroelectric power, transporting agricultural products, and municipal and industrial water use. Communities, industries, and infrastructure along the Mississippi River face an uncertain future as it grows more susceptible to climate extremes. A key challenge is determining whether Mississippi river discharge will increase or decrease during the 21st century. Because the 20th century record is limited in time, paleoclimate data and model simulations provide enhanced understanding of the basin's hydroclimate response to external forcing. Here, we investigate how anthropogenic forcing in the 20th century shifts the statistics of river discharge compared to a Last Millennium (LM) baseline using simulations from the Community Earth System Model Last Millennium Ensemble. We present evidence that the 20th century exhibits wetter conditions (i.e., increased river discharge) over the basin compared to the pre‐industrial, and that land use/land cover changes have a significant control on the hydroclimatic response. Conversely, while precipitation is projected to increase in the 21st century, the basin is generally drier (i.e., decreased river discharge) compared to the 20th century. Overall, we find that changes in greenhouse gases contribute to a lower risk of extreme discharge and flooding in the basin during the 20th century, while land use changes contribute to increased risk of flooding. The additional climate information afforded by the LM simulations offers an improved understanding of what drove extreme flooding events in the past, which can help inform the development of future regional flood mitigation strategies. 
    more » « less
  4. Land use change and climate variability have significantly altered the regional water cycle over the last century thereby affecting water security at a local to regional scale. Therefore, it is important to investigate how the climate, land use change, and water demand potentially influence the water security by applying the concept of water footprint. An integrated hydrological modeling framework using SWAT (Soil and Water Assessment Tool) model was developed by considering both anthropogenic (e.g. land use change, water demand) and climatic factors to quantify the spatio-temporal variability of water security indicators such as blue water scarcity, green water scarcity, Falkenmark index, and freshwater provision indicators in Savannah River Basin (SRB). The SRB witnesses a significant change in land use land cover (e.g. forest cover, urban area) as well as water demand (e.g. irrigation, livestock production). Overall our results reveal that, SRB witnessed a significant decrease in blue water due to the climate variability indicating that the precipitation has more control over the blue water resources. Whereas, green water was more sensitive to changes in land use pattern. In addition, the magnitude of various water security indicators are different within each county suggesting that water scarcity are controlled by various factors within a region. An integrated assessment of water footprint, environmental flow, anthropogenic factors, and climatic variables can provide useful information on the rising (how and where) of water related risk to human and ecological health. 
    more » « less
  5. Abstract. Anthropogenic warming in the Arctic is causing hydrological cycle intensification and permafrost thaw, with implications for flows of water, carbon, and energy from terrestrial biomes to coastal zones. To better understand the likely impacts of these changes, we used a hydrology model driven by meteorological data from atmospheric reanalysis and two global climate models for the period 1980–2100. The hydrology model accounts for soil freeze–thaw processes and was applied across the pan-Arctic drainage basin. The simulations point to greater changes over northernmost areas of the basin underlain by permafrost and to the western Arctic. An acceleration of simulated river discharge over the recent past is commensurate with trends drawn from observations and reported in other studies. Between early-century (2000–2019) and late-century (2080–2099) periods, the model simulations indicate an increase in annual total runoff of 17 %–25 %, while the proportion of runoff emanating from subsurface pathways is projected to increase by 13 %–30 %, with the largest changes noted in summer and autumn and across areas with permafrost. Most notably, runoff contributions to river discharge shift to northern parts of the Arctic Basin that contain greater amounts of soil carbon. Each season sees an increase in subsurface runoff; spring is the only season where surface runoff dominates the rise in total runoff, and summer experiences a decline in total runoff despite an increase in the subsurface component. The greater changes that are seen in areas where permafrost exists support the notion that increased soil thaw is shifting hydrological contributions to more subsurface flow. The manifestations of warming, hydrological cycle intensification, and permafrost thaw will impact Arctic terrestrial and coastal environments through altered river flows and the materials they transport. 
    more » « less