skip to main content


Title: River flow decline across the entire Arkansas River Basin in the 21st century
The Arkansas River and its tributaries provide critical water resources for agricultural irrigation, hydropower generation, and public water supply in the Arkansas River Basin (ARB). However, climate change and other environmental factors have imposed significant impacts on regional hydrological processes, resulting in widespread ecological and economic consequences. In this study, we projected future river flow patterns in the 21st century across the entire ARB under two climate and socio-economic change scenarios (i.e., SSP2-RCP45 and SSP5-RCP85) using the process-based Dynamic Land Ecosystem Model (DLEM). We designed “baseline simulations” (all driving factors were kept constant at the level circa 2000) and “environmental change simulations” (at least one driving factor changed over time during 2001–2099) to simulate the inter-annual variations of river flow and quantify the contributions of four driving factors (i.e., climate change, CO2 concentration, atmospheric nitrogen deposition, and land use change). Results showed that the Arkansas River flow in 2080–2099 would decrease by 12.1% in the SSP2-RCP45 and 27.9% in the SSP5-RCP85 compared to that during 2000–2019. River flow decline would occur from the beginning to the middle of this century in the SSP2-RCP45 and happen throughout the entire century in the SSP5-RCP85. All major rivers in the ARB would experience river flow decline with the largest percentage reduction in the western and southwestern ARB. Warming and drying climates would account for 77%–95% of the reduction. The rising CO2 concentration would exacerbate the decline through increasing foliage area and ecosystem evapotranspiration. This study provides insight into the spatial patterns of future changes in water availability in the ARB and the underlying mechanisms controlling these changes. This information is critical for designing watershed-specific management strategies to maintain regional water resource sustainability and mitigate the adverse impacts of climate changes on water availability.  more » « less
Award ID(s):
1946093
NSF-PAR ID:
10495359
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ELSEVIER
Date Published:
Journal Name:
Journal of Hydrology
Volume:
618
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
129253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soil erosion and sedimentation problems remain a major water quality concern for making watershed management policies in the Mississippi River Basin (MRB). It is unclear whether the observed decreasing trend of stream suspended sediment loading to the mouth of the MRB over the last eight decades truly reflects a decline in upland soil erosion in this large basin. Here, we improved a distributed regional land surface model, the Dynamic Land Ecosystem Model, to evaluate how climate and land use changes have impacted soil erosion and sediment yield over the entire MRB during the past century. Model results indicate that total sediment yield significantly increased during 1980–2018, despite no significant increase in annual precipitation and runoff. The increased soil erosion and sediment yield are mainly driven by intensified extreme precipitation (EP). Spatially, we found notable intensified EP events in the cropland‐dominated Midwest region, resulting in a substantial increase in soil erosion and sediment yield. Land use change played a critical role in determining sediment yield from the 1910s to the 1930s, thereafter, climate variability increasingly became the dominant driver of soil erosion, which peaked in the 2010s. This study highlights the increasing influences of extreme climate in affecting soil erosion and sedimentation, thus, water quality. Therefore, existing forest and cropland Best Management Practices should be revisited to confront the impacts of climate change on water quality in the MRB.

     
    more » « less
  2. Abstract

    Two decades into the 21st century there is growing evidence for global impacts of Antarctic and Southern Ocean climate change. Reliable estimates of how the Antarctic climate system would behave under a range of scenarios of future external climate forcing are thus a high priority. Output from new model simulations coordinated as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides an opportunity for a comprehensive analysis of the latest generation of state‐of‐the‐art climate models following a wider range of experiment types and scenarios than previous CMIP phases. Here the main broad‐scale 21st century Antarctic projections provided by the CMIP6 models are shown across four forcing scenarios: SSP1‐2.6, SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5. End‐of‐century Antarctic surface‐air temperature change across these scenarios (relative to 1995–2014) is 1.3, 2.5, 3.7 and 4.8°C. The corresponding proportional precipitation rate changes are 8, 16, 24 and 31%. In addition to these end‐of‐century changes, an assessment of scenario dependence of pathways of absolute and global‐relative 21st century projections is conducted. Potential differences in regional response are of particular relevance to coastal Antarctica, where, for example, ecosystems and ice shelves are highly sensitive to the timing of crossing of key thresholds in both atmospheric and oceanic conditions. Overall, it is found that the projected changes over coastal Antarctica do not scale linearly with global forcing. We identify two factors that appear to contribute: (a) a stronger global‐relative Southern Ocean warming in stabilisation (SSP2‐4.5) and aggressive mitigation (SSP1‐2.6) scenarios as the Southern Ocean continues to warm and (b) projected recovery of Southern Hemisphere stratospheric ozone and its effect on the mid‐latitude westerlies. The major implication is that over coastal Antarctica, the surface warming by 2100 is stronger relative to the global mean surface warming for the low forcing compared to high forcing future scenarios.

     
    more » « less
  3. Abstract

    A land process model, Integrated Science Assessment Model, is extended to simulate contemporary soybean and maize crop yields accurately and changes in yields over the period 1901–2100 driven by environmental factors (atmospheric CO2level ([CO2]) and climate), and management factors (nitrogen input and irrigation). Over the twentieth century, each factor contributes to global yield increase; increasing nitrogen fertilization rates is the strongest driver for maize, and increasing [CO2] is the strongest for soybean. Over the 21st century, crop yields are projected under two future scenarios, RCP4.5‐SSP2 and RCP8.5‐SSP5; the warmer temperature drives yields lower, while rising [CO2] drives yields higher. The adverse warmer temperature effect of maize and soybean is offset by other drivers, particularly the increase in [CO2], and resultant changes in the phenological events due to climate change, particularly planting dates and harvesting times, by 2090s under both scenarios. Global yield for maize increases under RCP4.5‐SSP2, which experiences continued growth in [CO2] and higher nitrogen input rates. For soybean, yield increases at a similar rate. However, in RCP8.5‐SSP5, maize yield declines because of greater climate warming, extreme heat stress conditions, and weaker nitrogen fertilization than RCP4.5‐SSP2, particularly in tropical and subtropical regions, suggesting that application of advanced technologies, and stronger management practices, in addition to climate change mitigation, may be needed to intensify crop production over this century. The model also projects spatial variations in yields; notably, the higher temperatures in tropical and subtropical regions limit photosynthesis rates and reduce light interception, resulting in lower yields, particularly for soybean under RCP8.5‐SSP5.

     
    more » « less
  4. Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures. 
    more » « less
  5. Abstract. Anthropogenic warming in the Arctic is causing hydrological cycle intensification and permafrost thaw, with implications for flows of water, carbon, and energy from terrestrial biomes to coastal zones. To better understand the likely impacts of these changes, we used a hydrology model driven by meteorological data from atmospheric reanalysis and two global climate models for the period 1980–2100. The hydrology model accounts for soil freeze–thaw processes and was applied across the pan-Arctic drainage basin. The simulations point to greater changes over northernmost areas of the basin underlain by permafrost and to the western Arctic. An acceleration of simulated river discharge over the recent past is commensurate with trends drawn from observations and reported in other studies. Between early-century (2000–2019) and late-century (2080–2099) periods, the model simulations indicate an increase in annual total runoff of 17 %–25 %, while the proportion of runoff emanating from subsurface pathways is projected to increase by 13 %–30 %, with the largest changes noted in summer and autumn and across areas with permafrost. Most notably, runoff contributions to river discharge shift to northern parts of the Arctic Basin that contain greater amounts of soil carbon. Each season sees an increase in subsurface runoff; spring is the only season where surface runoff dominates the rise in total runoff, and summer experiences a decline in total runoff despite an increase in the subsurface component. The greater changes that are seen in areas where permafrost exists support the notion that increased soil thaw is shifting hydrological contributions to more subsurface flow. The manifestations of warming, hydrological cycle intensification, and permafrost thaw will impact Arctic terrestrial and coastal environments through altered river flows and the materials they transport.

     
    more » « less