skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cusp volumes of alternating knots on surfaces
We study the geometry of hyperbolic knots that admit alternating projections on embedded surfaces in closed 3–manifolds. We show that, under mild hypothesis, their cusp area admits two-sided bounds in terms of the twist number of the alternating projection and the genus of the projection surface. As a result, we derive diagrammatic estimates of slope lengths and give applications to Dehn surgery. These generalize results of Lackenby and Purcell about alternating knots in the 3–sphere. Using a result of Kalfagianni and Purcell, we point out that alternating knots on surfaces of higher genus can have arbitrarily small cusp density, in contrast to alternating knots on spheres whose cusp densities are bounded away from zero due to Lackenby and Purcell.  more » « less
Award ID(s):
2004155
PAR ID:
10417826
Author(s) / Creator(s):
Date Published:
Journal Name:
Algebraic geometric topology
Volume:
22
ISSN:
1472-2747
Page Range / eLocation ID:
2467–2532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider hyperbolic links that admit alternating projections on surfaces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the volume of the complement of such a link is bounded below in terms of a Kauffman bracket function defined on link diagrams on the surface. In the case that the 3-manifold is a thickened surface, this Kauffman bracket function leads to a Jones-type polynomial that is an isotopy invariant of links. We show that coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic alternating links in the thickened surface. As a corollary of the proof of this result, we deduce that the twist number of a reduced, twist reduced, checkerboard alternating link projection with disk regions, is an invariant of the link. 
    more » « less
  2. We consider homologically essential simple closed curves on Seifert surfaces of genus one knots in S3, and in particular those that are unknotted or slice in S3. We completely characterize all such curves for most twist knots: they are either positive or negative braid closures; moreover, we determine exactly which of those are unknotted. A surprising consequence of our work is that the figure eight knot admits infinitely many unknotted essential curves up to isotopy on its genus one Seifert surface, and those curves are enumerated by Fibonacci numbers. On the other hand, we prove that many twist knots admit homologically essential curves that cannot be positive or negative braid closures. Indeed, among those curves, we exhibit an example of a slice but not unknotted homologically essential simple closed curve. We further investigate our study of unknotted essential curves for arbitrary Whitehead doubles of non-trivial knots, and obtain that there is a precisely one unknotted essential simple closed curve in the interior of the doubles’ standard genus one Seifert surface. As a consequence of all these we obtain many new examples of 3-manifolds that bound contractible 4-manifolds. 
    more » « less
  3. Kronheimer and Mrowka asked whether the difference between the four-dimensional clasp number and the slice genus can be arbitrarily large. This question is answered affirmatively by studying a knot invariant derived from equivariant singular instanton theory, and which is closely related to the Chern-Simons functional. This also answers a conjecture of Livingston about slicing numbers. Also studied is the singular instanton Frøyshov invariant of a knot. If defined with integer coefficients, this gives a lower bound for the unoriented slice genus, and is computed for quasi-alternating and torus knots. In contrast, for certain other coefficient rings, the invariant is identified with a multiple of the knot signature. This result is used to address a conjecture by Poudel and Saveliev about traceless SU(2) representations of torus knots. Further, for a concordance between knots with non-zero signature, it is shown that there is a traceless representation of the concordance complement which restricts to non-trivial representations of the knot groups. Finally, some evidence towards an extension of the slice-ribbon conjecture to torus knots is provided. 
    more » « less
  4. If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access. 
    more » « less
  5. Abstract The central question of knot theory is that of distinguishing links up to isotopy. The first polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928). Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture (1962) that the absolute values of the coefficients of the Alexander polynomial $$\Delta _{L}(t)$$ of an alternating link $$L$$ are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsváth and Szabó (2003) for the case of genus $$2$$ alternating knots, among others. We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we obtain that the absolute values of the coefficients of $$\Delta _{L}(t)$$, where $$L$$ is a special alternating link, form a log-concave sequence with no internal zeros. In particular, they are unimodal. 
    more » « less