skip to main content


Title: Cusp volumes of alternating knots on surfaces
We study the geometry of hyperbolic knots that admit alternating projections on embedded surfaces in closed 3–manifolds. We show that, under mild hypothesis, their cusp area admits two-sided bounds in terms of the twist number of the alternating projection and the genus of the projection surface. As a result, we derive diagrammatic estimates of slope lengths and give applications to Dehn surgery. These generalize results of Lackenby and Purcell about alternating knots in the 3–sphere. Using a result of Kalfagianni and Purcell, we point out that alternating knots on surfaces of higher genus can have arbitrarily small cusp density, in contrast to alternating knots on spheres whose cusp densities are bounded away from zero due to Lackenby and Purcell.  more » « less
Award ID(s):
2004155
NSF-PAR ID:
10417826
Author(s) / Creator(s):
Date Published:
Journal Name:
Algebraic geometric topology
Volume:
22
ISSN:
1472-2747
Page Range / eLocation ID:
2467–2532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access. 
    more » « less
  2. Kronheimer and Mrowka asked whether the difference between the four-dimensional clasp number and the slice genus can be arbitrarily large. This question is answered affirmatively by studying a knot invariant derived from equivariant singular instanton theory, and which is closely related to the Chern-Simons functional. This also answers a conjecture of Livingston about slicing numbers. Also studied is the singular instanton Frøyshov invariant of a knot. If defined with integer coefficients, this gives a lower bound for the unoriented slice genus, and is computed for quasi-alternating and torus knots. In contrast, for certain other coefficient rings, the invariant is identified with a multiple of the knot signature. This result is used to address a conjecture by Poudel and Saveliev about traceless SU(2) representations of torus knots. Further, for a concordance between knots with non-zero signature, it is shown that there is a traceless representation of the concordance complement which restricts to non-trivial representations of the knot groups. Finally, some evidence towards an extension of the slice-ribbon conjecture to torus knots is provided. 
    more » « less
  3. null (Ed.)
    We consider hyperbolic links that admit alternating projections on surfaces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the volume of the complement of such a link is bounded below in terms of a Kauffman bracket function defined on link diagrams on the surface. In the case that the 3-manifold is a thickened surface, this Kauffman bracket function leads to a Jones-type polynomial that is an isotopy invariant of links. We show that coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic alternating links in the thickened surface. As a corollary of the proof of this result, we deduce that the twist number of a reduced, twist reduced, checkerboard alternating link projection with disk regions, is an invariant of the link. 
    more » « less
  4. Abstract

    The X-ray emission mechanism of powerful extragalactic jets—which has important implications for their environmental impacts—is poorly understood. The X-ray/radio positional offsets in the individual features of jets provide important clues. Extending previous work in Reddy et al., we present a detailed comparison between X-ray maps, deconvolved using the Low-count Image Reconstruction and Analysis tool, and radio maps of 164 components from 77 Chandra-detected X-ray jets. We detect 94 offsets (57%), with 58 new detections. In FR II–type jet knots, the X-rays peak and decay before the radio in about half the cases, disagreeing with the predictions of one-zone models. While a similar number of knots lack statistically significant offsets, we argue that projection and distance effects result in offsets below the detection level. Similar deprojected offsets imply that X-rays could be more compact than radio for most knots, and we qualitatively reproduce this finding with a “moving-knot” model. The bulk Lorentz factor (Γ) derived for knots under this model is consistent with previous radio-based estimates, suggesting that kiloparsec-scale jets are only mildly relativistic. An analysis of the X-ray/radio flux ratio distributions does not support the commonly invoked mechanism of X-ray production from inverse Compton scattering of the cosmic microwave background, but does show a marginally significant trend of declining flux ratio as a function of the distance from the core. Our results imply the need for multi-zone models to explain the X-ray emission from powerful jets. We provide an interactive list of our X-ray jet sample athttp://astro.umbc.edu/Atlas-X.

     
    more » « less
  5. It has long been known that the quadratic term in the degree of the colored Jones polynomial of a knot is bounded above in terms of the crossing number of the knot. We show that this bound is sharp if and only if the knot is adequate. As an application of our result we determine the crossing numbers of broad families of non-adequate prime satellite knots. More specifically, we exhibit minimal crossing number diagrams for untwisted Whitehead doubles of zero-writhe adequate knots. This allows us to determine the crossing number of untwisted Whitehead doubles of any amphicheiral adequate knot, including, for instance, the Whitehead doubles of the connected sum of any alternating knot with its mirror image. We also determine the crossing number of the connected sum of any adequate knot with an untwisted Whitehead double of a zero-writhe adequate knot. 
    more » « less