skip to main content

Search for: All records

Award ID contains: 2004155

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove the Turaev-Viro invariants volume conjecture for a "universal" class of cusped hyperbolic 3-manifolds that produces all 3-manifolds with empty or toroidal boundary by Dehn filling. This leads to two-sided bounds on the volume of any hyperbolic 3-manifold with empty or toroidal boundary in terms of the growth rate of the Turaev-Viro invariants of the complement of an appropriate link contained in the manifold. We also provide evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about certain quantum representations of surface mapping class groups. A key step in our proofs is finding a sharp upper bound on the growth rate of the quantum 6j−symbol evaluated at q=e2πir.
    Free, publicly-accessible full text available April 1, 2023
  2. We prove the Turaev-Viro invariants volume conjecture for a "universal" class of cusped hyperbolic 3-manifolds that produces all 3-manifolds with empty or toroidal boundary by Dehn filling. This leads to two-sided bounds on the volume of any hyperbolic 3-manifold with empty or toroidal boundary in terms of the growth rate of the Turaev-Viro invariants of the complement of an appropriate link contained in the manifold. We also provide evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about certain quantum representations of surface mapping class groups. A key step in our proofs is finding a sharp upper bound on the growth rate of the quantum 6j−symbol evaluated at q=e2πir.
    Free, publicly-accessible full text available April 1, 2023
  3. We consider hyperbolic links that admit alternating projections on surfaces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the volume of the complement of such a link is bounded below in terms of a Kauffman bracket function defined on link diagrams on the surface. In the case that the 3-manifold is a thickened surface, this Kauffman bracket function leads to a Jones-type polynomial that is an isotopy invariant of links. We show that coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic alternating links in the thickened surface. As a corollary of the proof of this result, we deduce that the twist number of a reduced, twist reduced, checkerboard alternating link projection with disk regions, is an invariant of the link.
  4. We point out that the strong slope conjecture implies that the degrees of the colored Jones knot polynomials detect the figure eight knot. Furthermore, we propose a characterization of alternating knots in terms of the Jones period and the degree span of the colored Jones polynomial.
  5. We establish a relation between the "large r" asymptotics of the Turaev-Viro invariants $TV_r $and the Gromov norm of 3-manifolds. We show that for any orientable, compact 3-manifold $M$, with (possibly empty) toroidal boundary, $log|TVr(M)|$ is bounded above by a function linear in $r$ and whose slope is a positive universal constant times the Gromov norm of $M$. The proof combines TQFT techniques, geometric decomposition theory of 3-manifolds and analytical estimates of $6j$-symbols. We obtain topological criteria that can be used to check whether the growth is actually exponential; that is one has $log|TVr(M)|\geq B r$, for some $B>0$. We use these criteria to construct infinite families of hyperbolic 3-manifolds whose $SO(3)$- Turaev-Viro invariants grow exponentially. These constructions are essential for the results of article [3] where we make progress on a conjecture of Andersen, Masbaum and Ueno about the geometric properties of surface mapping class groups detected by the quantum representations. We also study the behavior of the Turaev-Viro invariants under cutting and gluing of 3-manifolds along tori. In particular, we show that, like the Gromov norm, the values of the invariants do not increase under Dehn filling and we give applications of this result on the question ofmore »the extent to which relations between the invariants TVr and hyperbolic volume are preserved under Dehn filling. Finally we give constructions of 3-manifolds, both with zero and non-zero Gromov norm, for which the Turaev-Viro invariants determine the Gromov norm.« less