skip to main content


Title: Assessing Workers’ Mental Stress in Hand-over Activities during Human-robot Collaboration
Human-robot collaboration (HRC) is an emerging research area that has gained tremendous attention from both academia and industry. Since some robot-related factors can elicit mental stress or have negative psychological effects on human workers, it is essential to understand these factors and maintain workers’ mental stress at a low level. Galvanic Skin Response (GSR) measures skin conductance and is known to be a physiological measurement that reflects short-term mental stress. Typically, skin conductance increases in response to greater mental stress. In this study, the mental stress caused by the hand-over activities of a collaborative robot was investigated using both GSR as an objective measurement and NASA-Task Load Index (TLX) as a subjective assessment. Several robot-related factors that may lead to mental stress were experimentally examined. GSR outcomes indicated that end effector approaching within workers’ view, low end effector speed, and constrained end effector trajectory led to a significantly lower skin conductance. Some aspects of the NASA-TLX also indicated that speed and trajectory significantly affected the scores. Yet, no significant differences were found between approaching directions regarding NASA-TLX scores.  more » « less
Award ID(s):
2024688
NSF-PAR ID:
10417872
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
66
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
537 to 541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective

    This study investigated the effects of different approach directions, movement speeds, and trajectories of a co-robot’s end-effector on workers’ mental stress during handover tasks.

    Background

    Human–robot collaboration (HRC) is gaining attention in industry and academia. Understanding robot-related factors causing mental stress is crucial for designing collaborative tasks that minimize workers’ stress.

    Methods

    Mental stress in HRC tasks was measured subjectively through self-reports and objectively through galvanic skin response (GSR) and electromyography (EMG). Robot-related factors including approach direction, movement speed, and trajectory were analyzed.

    Results

    Movement speed and approach direction had significant effects on subjective ratings, EMG, and GSR. High-speed and approaching from one side consistently resulted in higher fear, lower comfort, and predictability, as well as increased EMG and GSR signals, indicating higher mental stress. Movement trajectory affected GSR, with the sudden stop condition eliciting a stronger response compared to the constrained trajectory. Interaction effects between speed and approach direction were observed for “surprise” and “predictability” subjective ratings. At high speed, approach direction did not significantly differ, but at low speeds, approaching from the side was found to be more surprising and unpredictable compared to approaching from the front.

    Conclusion

    The mental stress of workers during HRC is lower when the robot’s end effector (1) approaches a worker within the worker’s field of view, (2) approaches at a lower speed, or (3) follows a constrained trajectory.

    Application

    The outcome of this study can serve as a guide to design HRC tasks with a low level of workers’ mental stress.

     
    more » « less
  2. Advances in robotics have contributed to the prevalence of human-robot collaboration (HRC). Working and interacting with collaborative robots in close proximity can be psychologically stressful. Therefore, it is important to understand the impacts of human-robot interaction (HRI) on mental stress to promote psychological well-being at the workplace. To this end, this study investigated how the HRI presence, complexity, and modality affect psychological stress in humans and discussed possible HRI design criteria during HRC. An experimental setup was implemented in which human operators worked with a collaborative robot on a Lego assembly task, using different interaction paradigms involving pressing buttons, showing hand gestures, and giving verbal commands. The NASA-Task Load Index, as a subjective measure, and the physiological galvanic skin conductance response, as an objective measure, were used to assess the levels of mental stress. The results revealed that the introduction of interactions during HRC helped reduce mental stress and that complex interactions resulted in higher mental stress than simple interactions. Meanwhile, the use of certain interaction modalities, such as verbal commands or hand gestures, led to significantly higher mental stress than pressing buttons, while no significant difference on mental stress was found between showing hand gestures and giving verbal commands.

     
    more » « less
  3. A rapid rise in the recycling and remanufacturing of end-of-use electronic waste (e-waste) has been observed due to multiple factors including our increased dependence on electronic products and the lack of resources to meet the demand. E-waste disassembly, which is the operation of extracting valuable components for recycling purposes, has received ever increasing attention as it can serve both the economy and the environment. Traditionally, e-waste disassembly is labor intensive with significant occupational hazards. To reduce labor costs and enhance working efficiency, collaborative robots (cobots) might be a viable option and the feasibility of deploying cobots in high-risk or low value-added e-waste disassembly operations is of tremendous significance to be investigated. Therefore, the major objective of this study was to evaluate the effects of working with a cobot during e-waste disassembly processes on human workload and ergonomics through a human subject experiment. Statistical results revealed that using a cobot to assist participants with the desktop disassembly task reduced the sum of the NASA-TLX scores significantly compared to disassembling by themselves (p = 0.001). With regard to ergonomics, a significant reduction was observed in participants’ mean L5/S1 flexion angle as well as mean shoulder flexion angle on both sides when working with the cobot (p < 0.001). However, participants took a significantly longer time to accomplish the disassembly task when working with the cobot (p < 0.001), indicating a trade-off of deploying cobot in the e-waste disassembly process. Results from this study could advance the knowledge of how human workers would behave and react during human-robot collaborative e-waste disassembly tasks and shed light on the design of better HRC for this specific context. 
    more » « less
  4. Objective

    This study aims to improve workers’ postures and thus reduce the risk of musculoskeletal disorders in human-robot collaboration by developing a novel model-free reinforcement learning method.

    Background

    Human-robot collaboration has been a flourishing work configuration in recent years. Yet, it could lead to work-related musculoskeletal disorders if the collaborative tasks result in awkward postures for workers.

    Methods

    The proposed approach follows two steps: first, a 3D human skeleton reconstruction method was adopted to calculate workers’ continuous awkward posture (CAP) score; second, an online gradient-based reinforcement learning algorithm was designed to dynamically improve workers’ CAP score by adjusting the positions and orientations of the robot end effector.

    Results

    In an empirical experiment, the proposed approach can significantly improve the CAP scores of the participants during a human-robot collaboration task when compared with the scenarios where robot and participants worked together at a fixed position or at the individual elbow height. The questionnaire outcomes also showed that the working posture resulted from the proposed approach was preferred by the participants.

    Conclusion

    The proposed model-free reinforcement learning method can learn the optimal worker postures without the need for specific biomechanical models. The data-driven nature of this method can make it adaptive to provide personalized optimal work posture.

    Application

    The proposed method can be applied to improve the occupational safety in robot-implemented factories. Specifically, the personalized robot working positions and orientations can proactively reduce exposure to awkward postures that increase the risk of musculoskeletal disorders. The algorithm can also reactively protect workers by reducing the workload in specific joints.

     
    more » « less
  5. Objective

    Trade-offs between productivity, physical workload (PWL), and mental workload (MWL) were studied when integrating collaborative robots (cobots) into existing manual work by optimizing the allocation of tasks.

    Background

    As cobots become more widely introduced in the workplace and their capabilities greatly improved, there is a need to consider how they can best help their human partners.

    Methods

    A theoretical data-driven analysis was conducted using the O*NET Content Model to evaluate 16 selected jobs for associated work context, skills, and constraints. Associated work activities were ranked by potential for substitution by a cobot. PWL and MWL were estimated using variables from the O*Net database that represent variables for the Strain Index and NASA-TLX. An algorithm was developed to optimize work activity assignment to cobots and human workers according to their most suited abilities.

    Results

    Human workload for some jobs decreased while workload for some jobs increased after cobots were reassigned tasks, and residual human capacity was used to perform job activities designated the most important to increase productivity. The human workload for other jobs remained unchanged.

    Conclusions

    The changes in human workload from the introduction of cobots may not always be beneficial for the human worker unless trade-offs are considered. Application: The framework of this study may be applied to existing jobs to identify the relationship between productivity and worker tolerances that integrate cobots into specific tasks.

     
    more » « less