ObjectiveThis study aims to improve workers’ postures and thus reduce the risk of musculoskeletal disorders in human-robot collaboration by developing a novel model-free reinforcement learning method. BackgroundHuman-robot collaboration has been a flourishing work configuration in recent years. Yet, it could lead to work-related musculoskeletal disorders if the collaborative tasks result in awkward postures for workers. MethodsThe proposed approach follows two steps: first, a 3D human skeleton reconstruction method was adopted to calculate workers’ continuous awkward posture (CAP) score; second, an online gradient-based reinforcement learning algorithm was designed to dynamically improve workers’ CAP score by adjusting the positions and orientations of the robot end effector. ResultsIn an empirical experiment, the proposed approach can significantly improve the CAP scores of the participants during a human-robot collaboration task when compared with the scenarios where robot and participants worked together at a fixed position or at the individual elbow height. The questionnaire outcomes also showed that the working posture resulted from the proposed approach was preferred by the participants. ConclusionThe proposed model-free reinforcement learning method can learn the optimal worker postures without the need for specific biomechanical models. The data-driven nature of this method can make it adaptive to provide personalized optimal work posture. ApplicationThe proposed method can be applied to improve the occupational safety in robot-implemented factories. Specifically, the personalized robot working positions and orientations can proactively reduce exposure to awkward postures that increase the risk of musculoskeletal disorders. The algorithm can also reactively protect workers by reducing the workload in specific joints.
more »
« less
Mitigating the risk of musculoskeletal disorders during human robot collaboration: a reinforcement learning approach
Work-related musculoskeletal disorders (MSDs) are often observed in human-robot collaboration (HRC), a common work configuration in modern factories. In this study, we aim to reduce the risk of MSDs in HRC scenarios by developing a novel model-free reinforcement learning (RL) method to improve workers’ postures. Our approach follows two steps: first, we adopt a 3D human skeleton reconstruction method to calculate workers’ Rapid Upper Limb Assessment (RULA) scores; next, we devise an online gradient-based RL algorithm to dynamically improve the RULA score. Compared with previous model-based studies, the key appeals of the proposed RL algorithm are two-fold: (i) the model-free structure allows it to “learn” the optimal worker postures without need any specific biomechanical models of tasks or workers, and (ii) the data-driven nature makes it accustomed to arbitrary users by providing personalized work configurations. Results of our experiments confirm that the proposed method can significantly improve the workers’ postures.
more »
« less
- Award ID(s):
- 2024688
- PAR ID:
- 10417875
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 66
- Issue:
- 1
- ISSN:
- 2169-5067
- Page Range / eLocation ID:
- 1543 to 1547
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In recent years, there has been a trend to adopt human-robot collaboration (HRC) in the industry. In previous studies, computer vision-aided human pose reconstruction is applied to find the optimal position of point of operation in HRC that can reduce workers’ musculoskeletal disorder (MSD) risks due to awkward working postures. However, the reconstruction of human pose through computer-vision may fail due to the complexity of the workplace environment. In this study, we propose a data-driven method for optimizing the position of point of operation during HRC. A conditional variational auto-encoder (cVAE) model-based approach is adopted, which includes three steps. First, a cVAE model was trained using an open-access multimodal human posture dataset. After training, this model can output a simulated worker posture of which the hand position can reach a given position of point of operation. Next, an awkward posture score is calculated to evaluate MSD risks associated with the generated postures with a variety of positions of point of operation. The position of point of operation that is associated with a minimum awkward posture score is then selected for an HRC task. An experiment was conducted to validate the effectiveness of this method. According to the findings, the proposed method produced a point of operation position that was similar to the one chosen by participants through subjective selection, with an average difference of 4.5 cm.more » « less
-
Musculoskeletal disorders (MSDs) represent one of the leading cause of injuries from modern industries. Previous research has identified a causal relation between MSDs and awkward working postures. Therefore, a robust tool for estimating and monitoring workers’ working posture is crucial to MSDs prevention. The Rapid Upper Limb Assessment (RULA) is one of the most adopted observational methods for assessing working posture and the associated MSDs risks in industrial practice. The manual application of RULA, however, can be time consuming. This research proposed a deep learning-based method for realtime estimating RULA from 2-D articulated pose using deep neural network. The method was trained and evaluated by 3-D pose data from Human 3.6, an open 3-D pose dataset, and achieved overall Marginal Average Error (MAE) of 0.15 in terms of RULA grand score (or 3.33% in terms of percentage error). All the data and code can be found at the first author’s GitHub (https://github.com/LLDavid/RULA_machine)more » « less
-
Current studies that apply reinforcement learning (RL) to dynamic spectrum access (DSA) problems in wireless communications systems are mainly focusing on model-free RL. However, in practice model-free RL requires large number of samples to achieve good performance making it impractical in real time applications such as DSA. Combining model-free and model-based RL can potentially reduce the sample complexity while achieving similar level of performance as model-free RL as long as the learned model is accurate enough. However, in complex environment the learned model is never perfect. In this paper we combine model-free and model-based reinforcement learning, introduce an algorithm that can work with an imperfectly learned model to accelerate the model-free reinforcement learning. Results show our algorithm achieves higher sample efficiency than standard model-free RL algorithm and Dyna algorithm (a standard algorithm that integrating model-based and model-free RL) with much lower computation complexity than the Dyna algorithm. For the extreme case where the learned model is highly inaccurate, the Dyna algorithm performs even worse than the model-free RL algorithm while our algorithm can still outperform the model-free RL algorithm.more » « less
-
Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. A Graphic User Interface (GUI) for the integration of the proposed HRC system is developed for the visualization of the real-time motion history and classification results of the gesture identification. A series of actual collaboration experiments are carried out between a human worker and a six-degree-of-freedom (6 DOF) Comau industrial robot, and the experimental results show the feasibility and robustness of the proposed system.more » « less
An official website of the United States government

