skip to main content


Title: Unsteady aerodynamic theory for membrane wings
We study analytically the dynamic response of membrane aerofoils subject to arbitrary, small-amplitude chord motions and transverse gusts in a two-dimensional inviscid incompressible flow. The theoretical model assumes linear deformations of an extensible membrane under constant tension, which are coupled aeroelastically to external aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic membrane responses are investigated for harmonic heave oscillations, an instantaneous change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady lift responses for these scenarios produce aeroelastic extensions to the Theodorsen, Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These extensions incorporate for the first time membrane fluid–structure interaction into the expressions for the unsteady lift response of a flexible aerofoil. The indicial responses to step changes in the angle of attack or gust profile are characterised by a slower lift response in short times relative to the classical rigid-plate response, while achieving a significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at low reduced frequencies but with a reduced lift amplitude and greater phase lag. However, as the reduced frequency approaches the resonance of the fluid-loaded membrane, the lift response amplitude increases abruptly and is followed by a sharp decrease. This behaviour reveals a frequency region, controlled by the membrane tension coefficient, for which membrane aerofoils could possess substantial aerodynamic benefits over rigid aerofoils in unsteady flow conditions.  more » « less
Award ID(s):
1846852
NSF-PAR ID:
10417891
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
948
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these structures. Over the past few decades, many studies have investigated the mechanisms that cause different types of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration (VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved understanding of the cause of these vibrations. In this study, the parameters governing the turbulence-induced (buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified. These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient condition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the prediction of critical reduced velocity 〖(RV〗_cr) as a function of equivalent yaw angle (*) and Scruton number (Sc) through measurement of aerodynamic- damping and stiffness. Wind tunnel tests using a section model of a smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0º to 45º indicate that the mean drag coefficient 〖(C〗_D) and Strouhal number (St) of a yawed cable decreases with the yaw angle, while the mean lift coefficient 〖(C〗_L) remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry cable at a specified wind speed for a given yaw angle. 
    more » « less
  2. Large-eddy simulations (LES) of the fluid flow over a NACA0018 airfoil at AOA =20 degrees angle of attack are performed to investigate the effect of surface morphing oscillations on the aerodynamic performance of the airfoil over a wide range of Reynolds numbers (Re = 5,000 to 500,000). These oscillations are in the form of low amplitude backward (opposite to the airfoil's forward motion) traveling wave actuations on the upper surface of the airfoil. The sharp interface curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. The nondimensional amplitude is a*=0.001 (a*=a/L; a: amplitude, L: chord length of the airfoil) and reduced frequency (f*= fL/U; f is the frequency and U is the freestream velocity) is chosen to match the leading edge vortex shedding frequency. The results of the simulations at the post-stall angle of attack (AOA =20 degrees) show that the lift coefficient increases more than 20% and the drag coefficient decreases more than 40% within the Reynolds number range of Re = 50,000-500,000 for traveling wave actuation of amplitude, a*=0.001, and frequency, f*=8. However, the lift and drag coefficients of the actuated airfoil were similar to the baseline airfoil for Re = 5,000. 
    more » « less
  3. Abstract

    A limiting factor in the design of smaller size uncrewed aerial vehicles is their inability to navigate through gust-laden environments. As a result, engineers have turned towards bio-inspired engineering approaches for gust mitigation techniques. In this study, the aerodynamics of a red-tailed hawk’s response to variable-magnitude discrete transverse gusts was investigated. The hawk was flown in an indoor flight arena instrumented by multiple high-speed cameras to quantify the 3D motion of the bird as it navigated through the gust. The hawk maintained its flapping motion across the gust in all runs; however, it encountered the gust at different points in the flapping pattern depending on the run and gust magnitude. The hawk responded with a downwards pitching motion of the wing, decreasing the wing pitch angle to between −20and −5, and remained in this configuration until gust exit. The wing pitch data was then applied to a lower-order aerodynamic model that estimated lift coefficients across the wing. In gusts slower than the forward flight velocity (low gust ratio), the lift coefficient increases at a low-rate, to a maximum of around 2–2.5. In gusts faster than the forward flight velocity (high gust ratio), the lift coefficient initially increased rapidly, before increasing at a low-rate to a value around 4–5. In both regimes, the hawk’s observed height change due to gust interaction was similar (and small), despite larger estimated lift coefficients over the high gust regime. This suggests another mitigation factor apart from the wing response is present. One potential factor is the tail pitching response observed here, which prior work has shown serves to mitigate pitch disturbances from gusts.

     
    more » « less
  4. Gusts of moderate and large magnitude induce flow separation and other complexities when they interact with the lifting surfaces of air vehicles. The presence of these nonlinear gusts are becoming ubiquitous in twenty-first-century air vehicles, where the classic potential flow–based methodologies applied in the past may no longer be valid. In this review, we define the parameter space for the presence of large-amplitude gusts and describe where and when these gusts may primarily be found. Recent research using modern experimental and computational techniques to define the limits of classical unsteady and indicial aerodynamic theories is summarized, with a focus on discrete transverse, streamwise (longitudinal), and vortex gust encounters. We propose areas where future research is needed to transition these studies of large-amplitude gust physics to real-time prediction and mitigation during flight. 
    more » « less
  5. Many studies over the 1960’s reported failure in predicting accurate flutter boundaries using the classical theory of unsteady aerodynamics even at zero angle of attack and/or lift conditions. Since the flutter phenomenon lies in the intersection between unsteady aerodynamics and structural dynamics, and because the structural dynamics of slender beams can be fairly predicted, it was inferred that the problem stems from the classical theory of unsteady aerodynamics. As a result, a research flurry occurred over the 1970’s and 1980’s investigating such a theory, with particular emphasis on the applicability of the Kutta condition to unsteady flows. There was almost a consensus that the Kutta condition must to be relaxed at high frequencies and low Reynolds numbers, which was also concluded from several recent studies of the unsteady aerodynamics of bio-inspired flight. Realizing that vorticity generation and lift development are essentially viscous processes, we develop a viscous extension of the classical theory of unsteady aerodynamics, equivalently an unsteady extension of the boundary layer theory. We rely on a special boundary layer theory that pays close attention to the details in the vicinity of the trailing edge: the triple deck theory. We use such a theory to relax the Kutta condition and determine a viscous correction to the inviscid unsteady lift. Using the developed viscous unsteady model, we develop a Reynolds-number-dependent lift frequency response (i.e., a viscous extension of Theodorsen’s). It is found that viscosity induces a significant phase lag to the lift development beyond Theodorsen’s inviscid solution, particularly at high frequencies and low Reynolds numbers. Since flutter, similar to any typical hopf bifurcation, is mainly dictated by the phase difference between the applied loads and the motion, it is expected that the viscosity-induced lag will affect the flutter boundary. To assess such an effect, we couple the developed unsteady viscous aerodynamic theory with a structural dynamic model of a typical section to perform aeroelastic simulation and analysis. We compare the flutter boundary determined using the developed viscous unsteady model to that of Theodorsen’s. 
    more » « less