Engineering has historically been positioned as “objective” and “neutral” (Cech, 2014), supporting a technical/social dualism in which “hard” technical skills are valued over “soft” social skills such as empathy and team management (Faulkner, 2007). Disrupting this dualism will require us to transform the way that engineering is taught, to include the social, economic, and political aspects of engineering throughout the curriculum. One promising approach to integrating social and technical is through developing students’ critical sociotechnical literacy, supporting students in coming to “understand the intrinsic and systemic sociotechnical relationship between people, communities, and the built environment” (McGowan & Bell, 2020, p. 981).
This work-in-progress study is part of a larger NSF-funded research project that explores integrating sociotechnical topics with technical content knowledge in a first-year engineering computing course. This course has previously focused on teaching students how to code, the basics of data science, and some applications to engineering. The revised course engages students in a series of sociotechnical topics, such as analyzing and interpreting data-based evidence of environmental racism. Each week, students read short articles and write reflections to prepare for in-class small group discussions.
Near the end of the semester, students examined the topic of racial bias in medical equipment. Students read two popular news articles that discussed differences in accuracies of pulse oximeter readings for patients with different skin tones. We analyze students’ reflection responses for evidence of their developing sociotechnical literacy along three dimensions: (1) bias, (2) differential impact, and (3) responsibility. This exploratory case study employs thematic analysis (Braun & Clarke, 2006) to analyze the students’ written reflections for this topic. Students reflected on evidence of racial bias and potential causes of bias in the device, how this bias is located in and furthers historical patterns of racism in medicine, and considered who or what might be responsible for either causing or fixing the now-known racial bias.
more »
« less
Perspectives of Seven Minoritized Students in a First-Year Course Redesign toward Sociotechnical Engineering Education
The social/technical dualism in the engineering curriculum leaves students ill-prepared to tackle real-world technical problems in their social, economic, and political contexts (Cech, 2013; Faulkner, 2007; Trevelan, 2010, 2014). Increasingly, students have expressed the desire for their technical courses to show the interplay between social and technical considerations (Leydens & Lucena, 2017), but they have few opportunities to develop these sociotechnical ways of thinking (i.e., values, attitudes, and skills that integrate the social and technical). Instead, students are left to infer engineering as technically neutral through the instructional decisions that make up an engineering curriculum (Cech, 2013; Trevelan, 2014).
In this study, we focus on how students understand the role of sociotechnical thinking in engineering. Particularly, this study centers seven minoritized students in an introductory engineering computation class who are pursuing an engineering degree. The study takes place at a medium private university in New England. These seven students are from a group of roughly seventy students split between two of the five sections for the course. These two sections were recently revised to include more sociotechnical readings, discussions, and homework facilitated with learning assistants. We are interested in understanding the self-described sense of belonging that these students feel as they relate it to learning about engineering as a sociotechnical field.
While the dualism between engineering's technical and social dimensions has been studied in ASEE LEES papers, articles in Engineering Studies, broader engineering education research, and Science, Technology, and Science publications (e.g., Cech, 2013; Faulkner, 2007; Leydens & Lucena, 2017; Riley, 2017; Wisnioski, 2012), there is a need to connect this vast literature with the similarly extensive research on students' sense of belonging and engineering identity development, specifically for those students who have historically been excluded from engineering. Specifically, we draw on W.E.B. DuBois's notion of a 'double consciousness' from the Souls of Black Folks (1903) as a lens through which to understand how these seven students take on the political, economic, and social dimensions presented to them through a first-year engineering curricular redesign around engineering as sociotechnical.
We note the small-n design of this study (Slaton & Pawley, 2018). The seven interviewed students are gender and racial minorities in engineering. However, we note that they do not represent all minoritized students in engineering, and to respect and elevate their experiences, we take a narrative approach. This study is intended to center the perspectives and experiences of these seven students as they navigate an engineering learning environment. We do not intend for the findings to be generalizable or exhaustive but informative as we think about scaling up the sociotechnical curricular redesign in engineering at this university and more broadly.
more »
« less
- Award ID(s):
- 2110727
- PAR ID:
- 10417936
- Date Published:
- Journal Name:
- 2022 ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many studies show that college engineering students’ sense of ethical and social responsibility declines over the course of their college careers (Cech, 2014; Canny & Bielefeldt, 2015; Schiff et al., 2021). One reason is that many college engineering programs and courses reinforce the social-technical dualism, which treats social and macro-ethical issues as distinct from the technical work more often associated with “real” engineering. Some programs, like the Science, Technology and Society (STS) program at [institution made confidential for review], attempt to challenge this dualism by supporting the integration of social and technical considerations within students’ design work and by asking students to grapple with the complex ethics of their work. However, this program is still embedded within a department, university, and society that subscribes to harmful ideologies such as technocracy, capitalism, and meritocracy, which value efficiency, surveillance, and control. These ideologies and their associated values constrain the imagination for what is possible in design work, for instance, by relying on technological ‘quick fixes’ to address complex social problems or by propping up large corporations as innovators, without adequately grappling with the harm that these corporations might be doing. This cultural reality creates an uphill battle for educators attempting to support engineering students’ sense of social consciousness and ethical responsibility. Thus, this study attempts to understand how engineering students’ imaginations are being constrained by societal structures and ideologies and when do they “break free” from these constraints? In this paper, we present a preliminary analysis of first-year STS students collaboratively reasoning through a simulated design scenario about a small community store facing challenges related to the Covid-19 pandemic (adapted from Gupta, 2017). Using discourse and narrative analysis, we analyzed multiple focus group interviews to identify what we call “co-occurrences,” or ideas that tend to hang together in participants’ reasoning. Examining these co-occurrences provides insight into the variety of ways socio-technical imaginaries play out in students’ design thinking.more » « less
-
Many engineering activists have emphasized the need to reframe engineering as a sociotechnical field in order to expand engineers' contributions to social justice and peace. Yet, reframing engineering as sociotechnical does not always lead to critical engagement with social justice. We provide several examples of how “social” aspects have been brought into engineering in a depoliticized manner that limits engagement with political and social justice goals. We link these examples to Cech’s three pillars of the “culture of disengagement” in engineering: social/technical dualisms, meritocracy, and depoliticization. We argue that reframing engineering as sociotechnical addresses the first pillar, the social/technical dualism, but does not necessarily include the second and third pillars. We propose that all three pillars can be addressed through integrating explicit attention to political engagement and social justice in efforts to reframe engineering as a sociotechnical field. Doing so can increase engineers’ capacity to contribute to social justice and peace.more » « less
-
“A culture of disengagement” is what Erin Cech [1, see also 4,9] has named the phenomenon that, within engineering schools, students graduate with less interest in societal issues than when they arrive. Much of this disengagement is attributed to mindsets ([2]: centrality of military and corporate organizations, uncritical acceptance of authority, technical narrowness, positivism and the myth of objectivity) and ideologies ([1]: technical-social dualism, depoliticization, meritocracy) that create a socio-technical divide that encourages many students to marginalize social issues related to engineering. In recent years, some scholars have proposed ways to overcome this disengagement, for example Jon Leydens and Juan Lucena’s (2018) “Engineering for Social Justice Criteria.” However, little research has been conducted to trace how engineering students are taking up these programs. This paper builds on an NSF-funded ethnographic study of cultural practices in a Science, Technology, and Society (STS) program that serves 1st and 2nd year engineering students [6, 22- 23]. That research study sought to answer: How does this program cultivate engineering students' macro-ethical reasoning about science and technology? Radoff and colleagues [6] identified four salient ways that students described the cultural practices of the STS program: 1) cultivating an ethics of care, 2) making the invisible visible, 3) understanding systems from multiple perspectives, and 4) empowering students to develop moral stances as engineers in society (developing a sense of agency). This paper builds off of insights uncovered from Radoff et al by zooming in on the ways students describe how their sense of agency manifests during their time in the program. On top of interview and focus group data, we draw examples from STS student participant observations in STS courses [27]. We use examples drawn from this data to reflect on how encouraging student agency can help overcome the socio-technical divide.more » « less
-
The overall objective of this project funded by the NSF-IUSE program is to employ a sociotechnical systems lens and framework and identify and evaluate organization-wide capacities and change catalysts in a predominantly white institution's college of engineering. The college of engineering is viewed as a sociotechnical organization with social and technical subsystems. The social subsystem models who talks to whom about what. The technical subsystem models the main activities and programs in the organization. Our project aims to: (1) assess the technical system’s capacity to support recruitment and retention through a technical system analysis; (2) assess the social system’s capacity to support recruitment and retention through a social system analysis; and (3) generate systemwide catalysts for URM student success. We conducted semi-structured hour-long interviews with 38 stakeholders including students, faculty, administrators and staff from various departments and student organizations within and outside the college. We are qualitatively analyzing the interview data to identify technical and social system barriers and enablers. Data analysis is ongoing, but our preliminary findings and insights are as follows: (1) social system barriers for URM students were interactions with peers in classroom environment (leading to a sense of isolation and a lack of belonging), interactions with faculty and staff especially in relating to their needs and being empathetic, and familial concerns and being able to support their family financially. (2) interactions with their friends was the top social system enabler for URM students. Family also provided them comfort and solace while attending to the rigors of college. They also felt that living at home would alleviate some of the financial burdens they faced. (3) the lack in numbers (and hence the lack of diversity and identity), curricular and instructional methods, and high school preparation were cited as the most important technical system barriers these students faced. (4) students identified as technical system enablers the professional development opportunities they had, their participation in students organizations, particularly in identity-based organizations such as NSBE, SHPE and WISE, and how that helped them forge new contacts and provided emotional support during their stay here. (5) there is recognition among the administrators and the staff working with URM students that diversity is important in the student body and that the mission of enabling URM student success is important, although the mission itself with respect to URM students is somewhat poorly defined and understood.more » « less