skip to main content


Title: Perspectives of Seven Minoritized Students in a First-Year Course Redesign toward Sociotechnical Engineering Education
The social/technical dualism in the engineering curriculum leaves students ill-prepared to tackle real-world technical problems in their social, economic, and political contexts (Cech, 2013; Faulkner, 2007; Trevelan, 2010, 2014). Increasingly, students have expressed the desire for their technical courses to show the interplay between social and technical considerations (Leydens & Lucena, 2017), but they have few opportunities to develop these sociotechnical ways of thinking (i.e., values, attitudes, and skills that integrate the social and technical). Instead, students are left to infer engineering as technically neutral through the instructional decisions that make up an engineering curriculum (Cech, 2013; Trevelan, 2014). In this study, we focus on how students understand the role of sociotechnical thinking in engineering. Particularly, this study centers seven minoritized students in an introductory engineering computation class who are pursuing an engineering degree. The study takes place at a medium private university in New England. These seven students are from a group of roughly seventy students split between two of the five sections for the course. These two sections were recently revised to include more sociotechnical readings, discussions, and homework facilitated with learning assistants. We are interested in understanding the self-described sense of belonging that these students feel as they relate it to learning about engineering as a sociotechnical field. While the dualism between engineering's technical and social dimensions has been studied in ASEE LEES papers, articles in Engineering Studies, broader engineering education research, and Science, Technology, and Science publications (e.g., Cech, 2013; Faulkner, 2007; Leydens & Lucena, 2017; Riley, 2017; Wisnioski, 2012), there is a need to connect this vast literature with the similarly extensive research on students' sense of belonging and engineering identity development, specifically for those students who have historically been excluded from engineering. Specifically, we draw on W.E.B. DuBois's notion of a 'double consciousness' from the Souls of Black Folks (1903) as a lens through which to understand how these seven students take on the political, economic, and social dimensions presented to them through a first-year engineering curricular redesign around engineering as sociotechnical. We note the small-n design of this study (Slaton & Pawley, 2018). The seven interviewed students are gender and racial minorities in engineering. However, we note that they do not represent all minoritized students in engineering, and to respect and elevate their experiences, we take a narrative approach. This study is intended to center the perspectives and experiences of these seven students as they navigate an engineering learning environment. We do not intend for the findings to be generalizable or exhaustive but informative as we think about scaling up the sociotechnical curricular redesign in engineering at this university and more broadly.  more » « less
Award ID(s):
2110727
NSF-PAR ID:
10417936
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering has historically been positioned as “objective” and “neutral” (Cech, 2014), supporting a technical/social dualism in which “hard” technical skills are valued over “soft” social skills such as empathy and team management (Faulkner, 2007). Disrupting this dualism will require us to transform the way that engineering is taught, to include the social, economic, and political aspects of engineering throughout the curriculum. One promising approach to integrating social and technical is through developing students’ critical sociotechnical literacy, supporting students in coming to “understand the intrinsic and systemic sociotechnical relationship between people, communities, and the built environment” (McGowan & Bell, 2020, p. 981). This work-in-progress study is part of a larger NSF-funded research project that explores integrating sociotechnical topics with technical content knowledge in a first-year engineering computing course. This course has previously focused on teaching students how to code, the basics of data science, and some applications to engineering. The revised course engages students in a series of sociotechnical topics, such as analyzing and interpreting data-based evidence of environmental racism. Each week, students read short articles and write reflections to prepare for in-class small group discussions. Near the end of the semester, students examined the topic of racial bias in medical equipment. Students read two popular news articles that discussed differences in accuracies of pulse oximeter readings for patients with different skin tones. We analyze students’ reflection responses for evidence of their developing sociotechnical literacy along three dimensions: (1) bias, (2) differential impact, and (3) responsibility. This exploratory case study employs thematic analysis (Braun & Clarke, 2006) to analyze the students’ written reflections for this topic. Students reflected on evidence of racial bias and potential causes of bias in the device, how this bias is located in and furthers historical patterns of racism in medicine, and considered who or what might be responsible for either causing or fixing the now-known racial bias. 
    more » « less
  2. Many studies show that college engineering students’ sense of ethical and social responsibility declines over the course of their college careers (Cech, 2014; Canny & Bielefeldt, 2015; Schiff et al., 2021). One reason is that many college engineering programs and courses reinforce the social-technical dualism, which treats social and macro-ethical issues as distinct from the technical work more often associated with “real” engineering. Some programs, like the Science, Technology and Society (STS) program at [institution made confidential for review], attempt to challenge this dualism by supporting the integration of social and technical considerations within students’ design work and by asking students to grapple with the complex ethics of their work. However, this program is still embedded within a department, university, and society that subscribes to harmful ideologies such as technocracy, capitalism, and meritocracy, which value efficiency, surveillance, and control. These ideologies and their associated values constrain the imagination for what is possible in design work, for instance, by relying on technological ‘quick fixes’ to address complex social problems or by propping up large corporations as innovators, without adequately grappling with the harm that these corporations might be doing. This cultural reality creates an uphill battle for educators attempting to support engineering students’ sense of social consciousness and ethical responsibility. Thus, this study attempts to understand how engineering students’ imaginations are being constrained by societal structures and ideologies and when do they “break free” from these constraints? In this paper, we present a preliminary analysis of first-year STS students collaboratively reasoning through a simulated design scenario about a small community store facing challenges related to the Covid-19 pandemic (adapted from Gupta, 2017). Using discourse and narrative analysis, we analyzed multiple focus group interviews to identify what we call “co-occurrences,” or ideas that tend to hang together in participants’ reasoning. Examining these co-occurrences provides insight into the variety of ways socio-technical imaginaries play out in students’ design thinking. 
    more » « less
  3. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  4. null (Ed.)
    Entrepreneurial education has been rapidly expanding within universities over the past 15 years with colleges of engineering being amongst the most active participants in embedding entrepreneurship into curricular and cocurricular activities (Pittaway & Cope, 2007). Well-developed and theoretically grounded educational interventions have been shown to increase entrepreneurial skills and perception among students. (Pittaway & Cope, 2007; Matlay & Caray, 2007; Duval-Couetil & Wheadon, 2013; Duval-Couetil & Rheed-Roads, 2012). Organizations including the National Science Foundation through the Lean Launch Curriculum and I-Corps program, VentureWell through curriculum development grants and their E-Team program, and the Kern Family Foundation through the Kern Entrepreneurial Education Network (KEEN) have provided significant funding to embed and transform entrepreneurial teaching and practice into colleges of engineering (Matthew et al., 2017; Pistrui, Blessing & Mekemson, 2008; Smith et al. 2017). This activity combines with an added emphasis among engineering programs to develop an entrepreneurial mindset among their engineering students with the belief that this will lead to them being more productive and innovative whether their career path leads them into established industry (becoming “intrapreneurs”) or later as entrepreneurs. While this trend toward developing more entrepreneurially minded engineering students is supported by global economic trends and a rapidly changing work environment, one factor has been largely overlooked in this process. Statistically, most entrepreneurial ventures fail, with disproportionately large value being created from a minority of entrepreneurial endeavors (Coats, 2019). Given this fact, until we find ways to drastically increase the success rate of entrepreneurial ventures, as we increase engineering students’ exposure to entrepreneurship, we are also increasing their exposure to failure very early in their careers. With this exposure, it is unknown whether sufficient preparation and education around project/venture failure is occurring to properly equip entrepreneurially minded engineering students to learn and grow from entrepreneurial failure. In this work in progress study, current and former engineering students who formed entrepreneurial ventures and experienced either failure of the venture or significant failure during the venture are interviewed to better understand the influences that led to both adaptive and maladaptive responses to these failures. Participants have been selected from those that have received funding through the national VentureWell E-Team program. This program awards three levels of funding and provides mentorship, training, and networking for the teams. The study uses the framework developed by Henry, Shorter, Charkoudian, Heemstra, and Corwin (2018) in which they associate pre-failure dispositions related to fixed and growth mindset (Dweck, 2000, 2006) and mastery vs. performance disposition (Pintrich, 2000 a, b). Our work will utilize this framework to guide the research, but more importantly will provide a unique context for analysis, specifically within engineering entrepreneurship, which will add to the body of work and expand the understanding of this pre-failure/post-failure disposition framework. Initial interview data and analysis will be presented in the context of this framework with preliminary insights to be shared with those in the field. 
    more » « less
  5. Ethics has long been recognized as crucial to responsible engineering, but the increasingly globalized environments present challenges to effective engineering ethics training. This paper is part of a larger research project that aims to examine the effects of culture and education on ethics training in undergraduate engineering students at universities in the United States, China, and the Netherlands. We are interested in how students’ curricular and extra-curricular (e.g., internships, service projects) experiences and training impact their ethical reasoning and moral dispositions, and how this differs cross-culturally. To understand this, we are conducting mixed methods research longitudinally over four years to engineering students at our participating universities to gauge their moral dispositions and ethical reasoning skills and to measure any change in these. This work-in-progress paper, however, is not about the direct outcomes of this research project. Rather, it critically examines our own practices and methods in doing this research. We begin the paper by briefly introducing the larger research project and motivating the use of comparative, multi-institutional case studies as necessary for contextualizing, complementing, and interpreting quantitative data on ethical reasoning and moral dispositions. Because the conditions related to engineering ethics education differ widely per participating institution for institutional (and also likely cultural) reasons, interpreting and analyzing quantitative survey data will require understanding contextual conditions of education at each institution. Comparative case studies can supply missing contextual information to provide a more complete picture of the engineering ethics educational contexts, strategies, and practices at each of the participating universities. However, in considering how to design and conduct these case studies, we realized we were operating under certain assumptions such as ethics in engineering as separate (and separable from) the “real,” or technical engineering curriculum. These assumptions have been widely problematized in engineering ethics education (Cech, 2014; Tormey et al. 2015; Polmear et al. 2019); they are assumptions that we in our teaching and research attempt to dispel. Our paper considers (and invites discussion on) the broader implications of methodological design in conducting cross-cultural multi-sited case studies in engineering ethics education research. It explores models for designing and conducting our case studies so as not to reproduce pernicious ideas about social and ethical issues in engineering as subsidiary “interventions” in the “actual,” (i.e., technical) curriculum. More generally we discuss how engineering ethics education research methods can be harnessed to overcome this established division. 
    more » « less